当前位置:首页 > 电源 > 电源电路
[导读]在本系列的前几期中,我讨论了实现备选方案以及这些决策如何影响设备参数以及受设备参数影响。在这篇文章中,我将解释设备参数和系统因素如何影响可实现的精度。

在本系列的前几期中,我讨论了实现备选方案以及这些决策如何影响设备参数以及受设备参数影响。在这篇文章中,我将解释设备参数和系统因素如何影响可实现的精度。

要了解我们可以实现的测量精度,我们首先需要了解潜在误差的来源。以下是两种错误来源的列表——请注意,这不是一个详尽的列表,而是重点介绍了一些主要来源:

放大器相关的误差(噪声)源:

· 输入失调电压 (V OS )。

· V OS漂移。

· 共模抑制比 (CMRR)。

· 电源抑制比 (PSRR)。

· 增益误差。

· 增益误差漂移。

非放大器误差源:

· 印刷电路板 (PCB) 布局。

· 分流电阻容差和漂移。

· 增益设置无源器件容差、匹配和漂移。

最差情况下的精度是所有误差源 e 的简单线性求和,如公式 1 所示:

如何开始使用电流检测放大器应用第三部分                      (1)

在统计上不可能同时使所有误差达到最大值,因此更可能的精度方程将是误差源的和方根,如方程 2 所示:

如何开始使用电流检测放大器应用第三部分  (2)

首先,让我们考虑外部误差源。放大器看到的 V SENSE是输入引脚上的值,这与设计人员在电阻上测量时可能会遇到的不同。理想情况下 V SHUNT = V SENSE,但寄生效应和迹线蚀刻将导致这不正确。开尔文连接将最小化 PCB 寄生误差的贡献。

当谈到分流电阻容差和漂移时,您愿意支付的成本与应用所需的性能之间需要权衡取舍。分流电阻器温度漂移是温度范围内的主要误差源之一,除非您选择昂贵的电阻器。目录分销网站上的高精度 (0.1%)、低漂移 (50ppm/°C) 电阻器以 1,000 件为单位的价格在 4.00 美元到 8.00 美元之间。

由于其集成的、匹配的、低漂移增益电阻网络,使用电流分流监视器可以消除运算放大器外部电路的误差贡献。这些片上网络的影响被考虑到电流检测放大器本身的误差贡献中。

对于放大器误差源,您需要在精度与成本之间做出类似的权衡。查看数据表中列出的每个参数规格的工作条件并将其与您的实际工作条件进行比较非常重要。在本次讨论中,我将重点关注两个主要误差因素:输入失调电压和增益误差。

输入失调电压将是低 V SENSE电平下的主要误差源。如果简化并假设 V SENSE = V SHUNT = I LOAD x R SHUNT(无寄生误差贡献),则 V OS的误差贡献可使用公式 3 计算:

如何开始使用电流检测放大器应用第三部分         (3)

让我们看看两种不同的电流分流监视器INA199和INA210,看看 V OS将如何影响误差。INA199数据表将 V OS(MAX)列为 150µV,而INA210 35µV。表 1 显示了使用 1mA 电流值和 1Ω 分流电阻器时各自的误差贡献。


 

INA199

INA210

V OS(最大值)

150µV

35µV

V操作系统错误

15.0%

3.5%

1:INA199INA210分流监控器误差贡献


如果您正在测量将导致低 V SENSE值的低电流值,则将 V OS最小化以最小化误差至关重要。随着 V SENSE相对于 V OS(MAX)增长,该误差贡献被最小化。如果 V SENSE V OS值的 1,000 倍,则误差贡献为 0.1%。另一方面,当 V SENSE远大于 V O时。主要的误差贡献将是增益误差。在大多数数据表中,这被指定为一个固定百分比,并且贡献是一个简单的百分比加法器。

让我们看看这两个错误如何导致总错误,再次假设它们是仅有的两个错误源。 1 显示了INA199和INA210的线性和以及误差计算平方根方法的工作原理。

如何开始使用电流检测放大器应用第三部分

1:INA210INA199总误差

这里,当 V SENSE较低 时,失调电压是主要误差源,而当 V SENSE相对于 V OS较高时,增益误差占主导地位。

我的分析已将误差计算简化为两个主要来源。然而,电流测量精度是一个非常复杂的主题,其中有许多移动部件需要相互权衡,以在特定操作条件下最大限度地提高性能。进行更彻底分析的关键要素之一是温度。温度漂移会影响多种规格,包括分流电阻值、失调电压和增益误差。使用具有零漂移的分流监控器(包括INA210或INA282)将有助于最大限度地减少失调漂移的影响。



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭