当前位置:首页 > 厂商动态 > 厂商动态
[导读]选择正确的电容器种类、功率电感器、开关频率和半导体对于 DC/DC 开关电源控制器的效率至关重要。做出正确的选择并非易事,但即使做出了正确的选择,控制器也必须具有高效率且符合 EMC 要求才能上市。

对于具有较高输入和输出功率的 DC/DC 转换器,必须在输入和输出端都使用滤波器以减少干扰发射。然而,在输入和输出电流较大的情况下,很难在效率、尺寸、滤波器的衰减和成本以及实际功率级这些参数之间取得平衡。图1是一个 100 瓦降压升压 DC/DC 设计的示例,它展示了在布局和元器件选择方面应考虑哪些因素。


优化大功率 DC/DC 转换器的 EMC 和效率  第1部分

图 1:100W 降压升压转换器演示板

任务

开发具有以下规格的降压升压转换器:

· 输出电压为 18V 时输出功率 100W,输入电压14-24V DC,最大输入电流 7A,最大输出电流 5.55A

· 输出功率为 100W 时效率大于 95%

· 符合 CISPR32 B 类发射标准(传导和辐射)

· 输出纹波电压低(小于20mVpp)

· 无法屏蔽

· 输入和输出的线缆较长(都是 1 米长)

· 尺寸尽可能紧凑

· 尽可能降低成本

以上要求相当严格,必须创建一个低寄生电感且紧凑的布局,再搭配与该转换器相匹配的滤波器。EMC 方面,主要起作用的天线是输入和输出电缆,它们的频率范围一直延申到 1GHz。根据不同的工作模式,转换器的输入和输出都有高频电流环路(如图 2 所示),因此必须对两者都进行滤波。滤波器可以防止高速开关的 MOSFET 通过电缆辐射出高频干扰。本例中的应用具有高达 60V DC 的宽输入电压范围、可调开关频率和驱动四个外部 MOSFET 的能力,设计自由度很高。


优化大功率 DC/DC 转换器的 EMC 和效率  第1部分

图2:开关电源原理图,其中红框中是高频回路,绿色的是关键开关节点,取决于 DC/DC 的操作模式。

该设计采用了六层双面印制电路板,开关频率为 400kHz。电感上的电流纹波应该大约是额定电流的 30%。60V MOSFET 采用了低导通电阻(RDS(on))和低热阻(Rth)的型号。图 3 展示的是经过简化的电路布局图。


优化大功率 DC/DC 转换器的 EMC 和效率  第1部分

图3:经过简化的功率电路设计示意图

选择电感器

REDEXPERT在线设计平台可以帮助您快速准确地选择电感器。在本例中,必须先为降压工作模式输入所有工作参数,其中包括输入电压 Vin、开关频率 fsw、输出电流 Iout、输出电压Vout以及纹波电流 IRipple,再为升压工作模式输入一次。降压模式得到的结果是较高的电感以及较小的最大峰值电流(7.52µH、5.83A)。升压模式得出的电感较小,但最大峰值电流较大(4.09µH、7.04A)。

设计平台选择了WE-XHMI系列的6.8µH、15A 额定电流的屏蔽电感线圈。它具有非常低的 RDC,尺寸也极为紧凑,仅为 15 毫米×15 毫米×10 毫米(长×宽×高)。创新的磁芯材料可实现温和且不受温度影响的饱和特性。

选择电容器

由于通过隔直电容器的脉冲电流高且要求的纹波低,铝聚合物电容器和陶瓷电容器的组合是最佳选择。通过确定允许的最大输入和输出电压纹波,所需的电容可以按照以下公式进行计算:


优化大功率 DC/DC 转换器的 EMC 和效率  第1部分


通过使用 REDEXPERT,可以轻松确定电容器(MLCC)的直流偏置,从而获得更实际的容值。预计在 24V 输入电压下电容容值会降低 20%。也就是只有 23µF 的有效电容,但仍然足够。将一个 68µF/35V 的WCAP-PSLC 铝聚合物电容与 0.22Ω 的 SMD 电阻串联后再与与陶瓷电容相并联。它的用途是保持电压转换器与输入滤波器相结合时的负输入阻抗的稳定性。由于该电容器也受到高脉冲电流的影响,因此铝电解电容器不太合适,因为它会因较高的 ESR 而迅速升温。

输出电容器也可以按照相同的方式进行选择。

优化大功率 DC/DC 转换器的 EMC 和效率  第1部分


此外,铝聚合物电容器(WCAP-PSLC 220µF/25V) 能提供足够快的瞬态响应能力。

本文的第 2 部分将介绍电路板布局、EMC 与择输入和输出滤波器元器件这一重要任务,以及功能电路的热验证等实际考虑因素。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

中国上海,2025年7月22日——全球知名半导体制造商ROHM(总部位于日本京都市)今日宣布,推出新的参考设计“REF67004”,该设计可通过单个微控制器控制被广泛应用于消费电子电源和工业设备电源中的两种转换器——电流...

关键字: 电源 PFC 转换器

在低压差(Low Dropout, LDO)电源应用场景中,如何平衡效率、成本与系统复杂度是工程师面临的核心挑战。根据行业测试数据,在输入输出压差(V_in-V_out)小于200mV的场景下,LDO的效率劣势较传统认知...

关键字: LDO 转换器

本文中,小编将对稳压器予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。

关键字: 稳压器 功率

电源是任何电子系统的重要组成部分。只有在极少数情况下,电子应用才能在不使用电源转换技术的情况下运行。转换器提供并调节电能,以确保电子电路能够准确捕获和处理传感器数据,并可靠地执行计算。尽管电源至关重要,但人们始终致力于缩...

关键字: 电子电路 转换器 电源

电气化带来的经济效益和生活质量提升推动了高压(HV)至 48V DC-DC 转换技术在众多市场中的应用。随着电池电压的增加,集成高压至48V转换的电源模块在电动汽车和其他应用中变得越来越普遍。了解双向固定比率母线转换器模...

关键字: 转换器 48 V电源模块 电动汽车

DC/DC转换器是开关电源芯片,指利用电容、电感的储能的特性,通过可控开关(MOSFET等)进行高频开关的动作,将输入的电能储存在电容(感)里,当开关断开时,电能再释放给负载,提供能量。

关键字: 转换器

在电动汽车发展的进程中,充电效率始终是影响其普及的关键因素。通过简单公式可知,功率越大,充电时间越短。三相电源所能提供的功率最高可达单相电源的 3 倍,这为提升充电功率提供了一条可行路径。而三相 PFC(功率因数校正)转...

关键字: 三相电源 功率因数校正 转换器

由于快速开关,电压和电流波形的上升沿和下降沿变化更快。急剧的变化会在高频下产生大量能量,成为开关模式电源供应中 EMI 的主要来源。这种高频能量会在电源供应的谐振腔内产生振铃。

关键字: 开关电源 转换器 EMI

在电动汽车(EV)和混合动力电动汽车(HEV)的发展进程中,众多电子功能对于实现车辆的高性能和高能效起着不可或缺的作用。其中,精确的电压检测功能对于实现最佳功率控制尤为关键。无论是 EV 还是 HEV,其关键部件,如逆变...

关键字: 电压检测 转换器 隔离放大器

在汽车行业向电动化转型的浪潮中,电动汽车(EV)与混合动力汽车(HEV)的市场份额逐步扩大。DC-DC 转换器作为这两类汽车的关键部件,其性能优劣直接关乎车辆电气系统的稳定运行与整体能效。随着车载系统的日益复杂,如高级驾...

关键字: 转换器 辅助系统 DC-DC
关闭