当前位置:首页 > 厂商动态 > 意法半导体
[导读]意法半导体近期发布的 STM32Cube.AI v7.2 带来了对深度量化神经网络的支持功能,从而可以在现有微控制器上运行更准确的机器学习应用软件。STM32Cube.AI 于 2019 年推出,用于把神经网络转换为适合STM32 MCU 的代码。该解决方案依附于 STM32CubeMX,这是一个帮助开发人员初始化STM32芯片的图形界面软件。同时,STM32Cube.AI 还用到 X-CUBE-AI软件包,其中包含用于转换训练好的神经网络的程序库。开发人员可以参照我们的入门指南,从STM32CubeMX内部开始使用 X-CUBE-AI并体验新功能。 目前,新增加的深度量化神经网络支持已经出现在我们与施耐德电气合作开发的人数统计应用软件中。

意法半导体近期发布的 STM32Cube.AI v7.2 带来了对深度量化神经网络的支持功能,从而可以在现有微控制器上运行更准确的机器学习应用软件。STM32Cube.AI 于 2019 年推出,用于把神经网络转换为适合STM32 MCU 的代码。该解决方案依附于 STM32CubeMX,这是一个帮助开发人员初始化STM32芯片的图形界面软件。同时,STM32Cube.AI 还用到 X-CUBE-AI软件包,其中包含用于转换训练好的神经网络的程序库。开发人员可以参照我们的入门指南,从STM32CubeMX内部开始使用 X-CUBE-AI并体验新功能。 目前,新增加的深度量化神经网络支持已经出现在我们与施耐德电气合作开发的人数统计应用软件中。

STM32Cube.AI: 从研究到实际软件

神经网络是什么?

最简单的神经网络就是一系列网络层。在神经网络中有一个输入层和一个输出层,以及介于两者之间的一个或多个隐藏层。因此,深度学习是指三层以上的神经网络,其中“深度”这个词表示有多个中间层。每一层都包含多个节点,每个节点都连接到下层的一个或多个节点。简而言之,信息通过输入层进入神经网络,穿过隐藏层,然后,从一个输出节点出来。

量化神经网络和二值化神经网络分别是什么?

开发人员在节点内使用权重和偏差两种参数来决定信息在神经网络上的传播方式。在数据通过网络时,这两个参数将会影响数据。权重是系数。当权重越复杂,网络输出越准确,但算量也随即增大。每个节点还用激活函数来确定如何转换输入值。因此,为了提高网络性能,开发人员可以使用权重精度较低的量化神经网络。最高效的量化神经网络是权重值和激活函数值只用+1 和 -1两个数值的二值化神经网络 (BNN)。因此,BNN神经网络对算力的要求非常低,然而准确度也最差。

为什深度量化神经网络很重要?

业界面临的挑战是找到一种简化神经网络的方法,以便在微控制器上运行推理运算,同时又不把准确度降到让神经网络毫无用处的程度。为了解决这个问题,意法半导体和意大利萨勒诺大学的研究人员在深度量化神经网络DQNN上展开合作。DQNN网络只用较小的权重值(1 位到 8 位),并且可以包含混合结构,即只有一部分层是二值化,而另一部分层则用位宽更高的浮点量化器。意法半导体和该大学的研究人员发表的研究论文论述了哪种混合结构可以产生最佳的结果,同时RAM 和 ROM的存储占用空间最低。

STM32Cube.AI 的新版本是这些研究活动的直接成果。7.2 版确实支持深度量化神经网络,充分利用二值化层的高效,同时不会丧失运算准确性。开发人员可以先用 QKeras 或 Larq 等开发框架训练神经网络模型,然后再通过 X-CUBE-AI处理训练好的神经网络。改用DQNN网络有助于节省内存占用空间,让工程师能够选用成本效益更好的芯片,或用一个微控制器代替多个元器件设计整个系统。因此,STM32Cube.AI 继续为边缘计算平台带来更强大的推理能力。

从演示软件到市场趋势

如何开发人数统计演示软件?

意法半导体和施耐德电气最近推出了双方合作利用 DQNN开发的一个人数统计演示软件。该系统通过处理热传感器图像数据,在 STM32H7 上运行推理算法,来确定是否有人越过一条假想线,以及是从哪个方向进出的。元器件的选择非常引人注目,因为它宣扬物料成本相对较低。施耐德没有选用更昂贵的处理器,而是使用深度量化神经网络来大幅降低内存和 CPU 的占用,从而缩减了应用系统面积,并为成本效益更高的解决方案打开大门。两家公司都在 2022 年 3 月的 TinyML 展会期间展示了该演示软件。

如何克服边缘机器学习的炒作问题?

意法半导体是第一家提供类似STM32Cube.AI 解决方案的 MCU厂商,根据 MLCommons 基准测试,我们的工具的性能继续名列前茅。从学术论文到软件发布,最新的发展历程表明,意法半导体之所以表现出色,是因为我们优先考虑有意义的影响实际应用的研究活动。我们关心的是让 AI 变得实用且可用,而不只是一个时髦术语。Gartner的市场分析师预计,嵌入式 AI 开发企业将很快经历“幻灭低谷期”。通过争做业界龙头,以研究为动力,专注实际应用和精心优化,意法半导体克服了这一问题。

参考文献

Check out STM32Cube.AI v7.2

D. Pau, M. Lattuada, F. Loro, A. De Vita and G. Domenico Licciardo. “Comparing Industry Frameworks with Deeply Quantized Neural Networks on Microcontrollers”. 2021. IEEE International Conference on Consumer Electronics (ICCE)pp. 1-6,

“5 Trends Drive the Gartner Hype Cycle for Emerging Technologies, 2020.” 


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭