当前位置:首页 > 智能硬件 > 人工智能AI
[导读]深度学习是近10年机器学习领域发展最快的一个分支,由于其重要性,三位教授(Geoffrey Hinton、Yann Lecun、Yoshua Bengio)因此同获图灵奖。深度学习模型的发展可以追溯到1958年的感知机(Perceptron)。1943年神经网络就已经出现雏形(源自NeuroScience),1958年研究认知的心理学家Frank发明了感知机,当时掀起一股热潮。后来Marvin Minsky(人工智能大师)和Seymour Papert发现感知机的缺陷:不能处理异或回路等非线性问题,以及当时存在计算能力不足以处理大型神经网络的问题。于是整个神经网络的研究进入停滞期。

深度学习是近10年机器学习领域发展最快的一个分支,由于其重要性,三位教授(Geoffrey Hinton、Yann Lecun、Yoshua Bengio)因此同获图灵奖。深度学习模型的发展可以追溯到1958年的感知机(Perceptron)。1943年神经网络就已经出现雏形(源自NeuroScience),1958年研究认知的心理学家Frank发明了感知机,当时掀起一股热潮。后来Marvin Minsky(人工智能大师)和Seymour Papert发现感知机的缺陷:不能处理异或回路等非线性问题,以及当时存在计算能力不足以处理大型神经网络的问题。于是整个神经网络的研究进入停滞期。

最近30年来取得快速发展。总体来说,主要有4条发展脉络。

第一个发展脉络以计算机视觉和卷积网络为主。

这个脉络的进展可以追溯到1979年,Fukushima提出的Neocognitron。该研究给出了卷积和池化的思想。1986年Hinton提出了反向传播训练MLP(之前也有几个类似的研究),该研究解决了感知机不能处理非线性学习的问题。1998年,以Yann LeCun为首的研究人员实现了一个七层的卷积神经网络LeNet-5以识别手写数字。现在普遍把Yann LeCun的这个研究作为卷积网络的源头,但其实在当时由于SVM的迅速崛起,这些神经网络的方法还没有引起广泛关注。真正使得卷积神经网络荣耀登上大雅之堂的事件是,2012年Hinton组的AlexNet(一个设计精

巧的CNN)在ImageNet上以巨大优势夺冠,这引发了深度学习的热潮。AlexNet在传统CNN的基础上加上了ReLU、Dropout等技巧,并且网络规模更大。这些技巧后来被证明非常有用,成为卷积神经网络的标配,被广泛发展,于是后来出现了VGG、GoogLenet等新模型。2016年,青年计算机视觉科学家何恺明在层次之间加入跳跃连接,提出残差网络ResNet。ResNet极大增加了网络深度,效果有很大提升。一个将这个思路继续发展下去的是近年的CVPR Best Paper中黄高提出的DenseNet。在计算机视觉领域的特定任务出现了各种各样的模型(Mask-RCNN等),这里不一一介绍。2017年,Hinton认为反向传播和传统神经网络还存在一定缺陷,因此提出Capsule Net,该模型增强了可解释性,但目前在CIFAR等数据集上效果一般,这个思路还需要继续验证和发展。

第二个发展脉络以生成模型为主。

传统的生成模型是要预测联合概率分布P(x,y)。机器学习方法中生成模型一直占据着一个非常重要的地位,但基于神经网络的生成模型一直没有引起广泛关注。Hinton在2006年的时候基于受限玻尔兹曼机(RBM,一个19世纪80年代左右提出的基于无向图模型的能量物理模型)设计了一个机器学习的生成模型,并且将其堆叠成为Deep BeliefNetwork,使用逐层贪婪或者wake-sleep的方法训练,当时模型的效果其实并没有那么好。但值得关注的是,正是基于RBM模型,Hinton等人开始设计深度框架,因此这也可以看做深度学习的一个开端。Auto-Encoder也是上个世纪80年代Hinton就提出的模型,后来随着计算能力的进步也重新登上舞台。Bengio等人又提出了Denoise Auto-Encoder,主要针对数据中可能存在的噪音问题。Max Welling(也是变分和概率图模型的高手)等人后来使用神经网络训练一个有一层隐变量的图模型,由于使用了变分推断,并且最后长得跟Auto-Encoder有点像,被称为Variational Auto-Encoder。此模型中可以通过隐变量的分布采样,经过后面的Decoder网络直接生成样本。生成对抗模型GAN(Generative Adversarial Network)是2014年提出的非常火的模型,它是一个通过判别器和生成器进行对抗训练的生成模型,这个思路很有特色,模型直接使用神经网络G隐式建模样本整体的概率分布,每次运行相当于从分布中采样。后来引起大量跟随的研究,包括:DCGAN是一个相当好的卷积神经网络实现,WGAN是通过维尔斯特拉斯距离替换原来的JS散度来度量分布之间的相似性的工作,使得训练稳定。PGGAN逐层增大网络,生成逼真的人脸。

第三个发展脉络是序列模型。

序列模型不是因为深度学习才有的,而是很早以前就有相关研究,例如有向图模型中的隐马尔科夫HMM以及无向图模型中的条件随机场模型CRF都是非常成功的序列模型。即使在神经网络模型中,1982年就提出了Hopfield Network,即在神经网络中加入了递归网络的思想。1997年Jürgen Schmidhuber发明了长短期记忆模型LSTM(Long-Short Term Memory),这是一个里程碑式的工作。当然,真正让序列神经网络模型得到广泛关注的还是2013年Hinton组使用RNN做语音识别的工作,比传统方法高出一大截。在文本分析方面,另一个图灵奖获得者Yoshua Bengio在SVM很火的时期提出了一种基于神经网络的语言模型(当然当时机器学习还是SVM和CRF的天下),后来Google提出的word2vec(2013)也有一些反向传播的思想,最重要的是给出了一个非常高效的实现,从而引发这方面研究的热潮。后来,在机器翻译等任务上逐渐出现了以RNN为基础的seq2seq模型,通过一个Encoder把一句话的语义信息压缩成向量再通过Decoder转换输出得到这句话的翻译结果,后来该方法被扩展到和注意力机制(Attention)相结合,也大大扩展了模型的表示能力和实际效果。再后来,大家发现使用以字符为单位的CNN模型在很多语言任务也有不俗的表现,而且时空消耗更少。Self-attention实际上就是采取一种结构去同时考虑同一序列局部和全局的信息,Google有一篇很有名的文章“attention is all you need”把基于Attention的序列神经模型推向高潮。当然2019年ACL上同样有另一篇文章给这一研究也稍微降了降温。

第四个发展脉络是增强学习。

这个领域最出名的当属Deep Mind,图中标出的David Silver博士是一直研究RL的高管。Q-learning是很有名的传统RL算法,Deep Q-learning将原来的Q值表用神经网络代替,做了一个打砖块的任务。后来又应用在许多游戏场景中,并将其成果发表在Nature上。Double Dueling对这个思路进行了一些扩展,主要是Q-Learning的权重更新时序上。DeepMind的其他工作如DDPG、A3C也非常有名,它们是基于Policy Gradient和神经网络结合的变种。大家都熟知的AlphaGo,里面其实既用了RL的方法也有传统的蒙特卡洛搜索技巧。Deep Mind后来提出了的一个用AlphaGo框架,但通过主学习来玩不同(棋类)游戏的新算法Alpha Zero。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭