当前位置:首页 > 电源 > 电源AC/DC
[导读]本文介绍了安森美半导体用于xDSL调制解调器AC-DC适配器的一种经过完备构建及测试的GreenPointTM解决方案。这电源参考设计旨在用于需要良好输出稳压的低高度离线应用。除了xDSL调制解调器,这参考设计还适合于功率介于10至20 W范围、需要单路输出电压的打印机、路由器、集线器和/或类似的消费类音视频产品应用。

家庭和办公应用中的xDSL调制解调器通常采用外部交流-直流(AC-DC)适配器供电。从大多数人的使用习惯来看,这些适配器一直插在电源插座上,持续从交流主电源消耗着电能。据估计,通过适配器的电能中有高达25%是在待机(空载)时消耗的。基于这个原因,AC-DC适配器在设计之初就必须考虑到在待机模式下要保持极低的能耗。

除了待机能耗要尽可能地低,AC-DC适配器的工作效率必须非常高。由于电子设备工作时的能耗毕竟占据着更高比例(75%),较高的工作效率能够帮助节省电能。有鉴于此,世界各地的规范机构不断发布与实施针对外部电源(EPS)在工作及待机时的能效要求,如表1所示。

1:针对外部电源的一些主要能效规范。

调制解调器AC-DC适配器设计规范要求

对于调制解调器原始设备制造商(OEM)AC-DC适配器已经成为大宗商用产品。因此,他们强制要求符合严苛的规范,同时还要求低成本。对于AC-DC适配器而言,关键的性能指标包括三项,分别是:功率密度(受封装尺寸要求驱动)、安全性和低外壳温度。安森美半导体的调制解调器AC-DC适配器参考设计的规范要求如下:

输入90-270 Vac50/60 Hz

输出1.3 A持续电流时12 Vdc±5%(功率为16 W)1.6 A浪涌电流达10 s

稳压:结合线路和负载条件下<2%

输出纹波:低于200 mV p/p

稳流:结合线路和负载条件下<10%

平均能效:≥0.09 * Ln (16) + 0.49 = 74%(符合“能源之星”外部电源1.1版要求)

待机(空载)能耗:≤0.3 W

工作温度050

冷却方式:对流

输入保护:采用1 A熔丝提供8 Ω浪涌限制

输出保护:过流保护、过压保护和过温保护

遵从的安全标准3 kV I/O隔离

遵从的EMI标准FCC Part 15 conducted EMI (Level B, average profile)

电路工作原理

1所示的是这AC-DC适配器的电路原理图。从图中可以看出,这适配器电源是基于反激转换器拓扑结构而设计,采用了简单的齐纳器件,再加上光电耦合器反馈电路用于输出电压感测和稳压。交流输入通过D1D44个二极管进行全波整流,并通过电容C3C4进行滤波,为反激转换器段提供直流“bulk”总线。电阻R1在导通时提供浪涌电流限制功能,而电容C1C2和电感L1L2构成了针对导电电磁干扰(EMI)的共模及差模滤波。

1:安森美半导体16 W Modem AC-DC适配器参考设计的电路原理图。

其中的反激转换器由NCP1027控制器(含集成的MOSFET U1)、反激变压器T1以及二极管D6、电容C6C7等次级输出整流/滤波部分组成。T1上的辅助绕组及R15D7C10R9C9等相关元件为这控制芯片提供工作偏置(VCC),并在电源短路时容许低输出功率,及在空载条件下容许极低待机能耗。由于辅助绕组产生的电压会追踪主输出电压,这电压还会在发生反馈环路开路时用于感测过压条件。

过压保护(OVP)启动(trip)电平能够通过辅助绕组的匝数和电阻R9的值来调节。主次级电压通过肖特基二极管D6来整流,并通过主输出电容C6C7滤波至相对平常的直流电平。电容C12为输出提供额外的高频噪声滤波功能。由R2R3C5D5组成的电阻电容二极管(RCD)缓冲器用于对T1初级泄漏电感导致的电压尖峰进行钳位。这缓冲器网络限制峰值电压及降低潜在的EMI放射问题,从而防止潜在的MOSFET漏极损伤(引脚5)

2:可替代RCD缓冲器电路的非耗散型谐振缓冲器电路

除了上述RCD缓冲器电路,还有一种可替代的非耗散性谐振缓冲器电路,如图2所示。根据变压器设计的属性及相关的寄生参数,这种缓冲器还可以将电路效率提升几个百分点。随着电源输出电压和/或功率电平的降低——取决于具体需求,这种能效的提升可能对于符合“能源之星”能效要求至关重要。这非耗散性缓冲器电路采用了由LrCr组成的谐振储能(tank)电路,这谐振储能电路实质上充当电抗型(reactive)电荷泵,将变压器的漏电抗能量返回至(C4上的)输入总线而非在电阻上将其泄放掉。这可以通过由额外快速恢复二极管和小型1.5 mH电感Lr实现,但会增加些许成本。

回到图1。输出电压稳压是通过由Z1R5R6R7和光耦合器U2等元件组合实现的。当输出电压增加至约12 V时,齐纳器件Z1导电,当有足够的电流流进R7从而产生导通光耦二极管所需的0.9 V电压时,电压反馈环路关闭,输出将被稳压。电阻R7的使用迫使齐纳电流成为器件电压/电流(V/I)曲线的稳定部分,使得输出电压的温度效应得以最小化。输出电压将等于额定齐纳电压加上约0.9 V。但因为齐纳器件和光耦合器特性以及这电路较小的负温度系统的缘故,(实际电压)可能会有一些变化,但输出电压(Vout)设定点变化必须不超过±5%。可选电阻R5支持对输出电压仅在向上方向进行微调。

如果输出电流超过约1.8 A,转换器占空比将被MOSFET U1的峰值电流感测所降低,而输出电压将开始下降。由于C10上的Vcc偏置电压将随着输出电压下降,最终Vcc引脚1上将没有足够电压来为控制器供电,而电源会进入启动-停止打嗝(hiccup)模式,这会防止大输出电流进入过载条件,同时保护电源和负载。

电阻R10R12组成的网络为电路在交流输入电压(及直流buck电压相应地)下降至低于大约75 Vac时提供欠压保护。引脚3(芯片在此引脚关闭)上的电平能够通过R10来调节。C11为这输入提供滤波。此外,如果需要的话,可以通过可选的电阻R8R13R14来提供可选的过功率补偿功能。

变压器设计

对于低功率应用而言,需要变压器尺寸尽可能地小;但是,随着变压器尺寸变小,磁芯的横截面积也会变小。这就需要更多的初级匝数来维持可接受的磁通量密度限制,并可能导致绕轴上聚集过多的匝数,从而抑制了初级和次级之间进行有效的绝缘。初级匝数太多也会增加初级泄漏电感,这还未提及通常绕组上会有的直流阻抗。本参考设计中采用了E25/10/6铁芯,并针对上述参数问题进行了较为令人满意的折衷。针对通用输入的变压器设计如图3所示。

还有一种专门针对230 Vac输入条件(欧洲)的设计,可以提供高一些的能效,并能够将持续功率输出增加至20 W(1.65 A)。无论是哪种设计,初级都分为两层,而次级和Vcc绕组夹在中间。这种配置的泄漏电感更低,并因此在MOSFET关闭时提供更低的电压尖锋。这种三绕组12 V次级适合于将绕组中的交流和直流损耗降到最低。确切的引脚输出将取决于具体布线,但磁芯选择、线束大小、电感值和匝数比应当适合恰当的操作。这种特别的反激变压器设计用于100 kHz不连续导电模式(DCM)工作,因此NCP1027的引脚2提供的斜坡补偿特性并非必需。

3:针对通用输入条件(90-270 Vac)的变压器设计。

测试结果

1) 工作效率。

120230 Vac输入条件下25%50%75%100%负载时的能效测试结果如表2所示。其中左表所示为采用RCD缓冲器电路的参考设计的能效数据,而右表为采用谐振缓冲器电路的参考设计相对略高的能效数据。值得一提的是,这两种情况下的平均能效都轻易地满足CEC和能源之星EPS规范(1.1)对所属功率电平范围的要求。在230 Vac输入条件下,轻载时能效会略微降低,主要是因为在这种输入电平时MOSFET的开关损耗较高。

2:安森美半导体16 W Modem AC-DC适配器参考设计的平均能效。

2) 待机(空载)能耗

采用传统RCD缓冲器电路的参考设计的空载能耗为:

290 mW @ 120 Vac

210 mW @ 240 Vac

采用非耗散性谐振缓冲器电路的参考设计的空载能:

240 mW @ 120 Vac

200 mW @ 240 Vac

这些空载能耗数据不仅符合CEC和“能源之星”1.1版要求,更符合“能源之星”

最新的2.0版要求。

总结:

本文介绍了安森美半导体用于xDSL调制解调器AC-DC适配器的一种经过完备构建及测试的GreenPointTM解决方案。这电源参考设计旨在用于需要良好输出稳压的低高度离线应用。除了xDSL调制解调器,这参考设计还适合于功率介于1020 W范围、需要单路输出电压的打印机、路由器、集线器和/或类似的消费类音视频产品应用。

这电源参考电源设计基于安森美半导体集成了700 V MOSFETNCP1027单片控制器,构建了输出能力为12 V1.3 A的电源,具有超过1.6 A的浪涌能力,符合“能源之星”等规范机构的工作能效和待机能耗要求,以及其它安全规范要求。值得一提的是,只需要对变压器砸数比和电压参考齐纳器件进行重新配置,这参考设计就能修改用于输出电压在几伏到高达28 V(或更高)、功率约为20 W的应用。

 

 

 

 

 

 

 

 

 

 

 

 

 

 [!--empirenews.page--]

 

 

 

 

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

该SiP系列现已增至三款器件,均使用了Transphorm的SuperGaN,为支持新一代适配器和充电器拓展了功率等级

关键字: 氮化镓 适配器 充电器

开关电源适配器将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对它的相关情况以及信息有所认识和了解,详细内容如下。

关键字: 适配器 电源 开关电源 充电器

在这篇文章中,小编将对开关电源适配器的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: 适配器 电源 开关电源

一直以来,开关电源适配器都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来开关电源适配器的相关介绍,详细内容请看下文。

关键字: 适配器 电源 开关电源

开关电源适配器作为电子设备的重要组成部分,为各类设备提供稳定、高效的电源供应。然而,在某些情况下,我们可能需要拆解开关电源适配器,例如进行维修、更换部件或进行学术研究等。本文将详细介绍开关电源适配器的拆解步骤,帮助读者了...

关键字: 开关电源 适配器 电子设备

开关电源适配器作为电子设备的重要组件,其性能与参数直接关联到设备的稳定运行和能源利用效率。了解和掌握开关电源适配器的各项参数,对于正确选择和使用适配器,以及优化设备性能具有重要意义。本文将详细解析开关电源适配器的主要参数...

关键字: 开关电源 适配器 直流电压

开关电源适配器,作为电子设备不可或缺的一部分,其作用举足轻重。它不仅为设备提供稳定、可靠的电源,还确保了设备在复杂多变的电源环境下能够正常运行。本文将对开关电源适配器的作用进行深入的探讨,以期帮助读者更好地理解其重要性。

关键字: 开关电源 适配器 控制电路

调制解调器,英文名称为“Modem”,是调制器和解调器的缩写,是一种计算机硬件。它的主要功能是模拟信号与数字信号的转换,实现信息的远程传输。具体来说,调制器的作用是将计算机的数字信号转换成可以在电话线上传输的模拟信号;而...

关键字: 调制解调器 电信设备

调制解调器(Modem)是现代通信系统中不可或缺的关键组件,它承载着模拟信号与数字信号相互转换的重任,实现了信息传输过程中的“语言翻译”。本文将详述调制解调器的工作原理、基本功能以及其在不同通信环境下的重要作用。

关键字: 调制解调器 信号转换

在最近举行的第77号一致性协议组(CAG)会议上,罗德与施瓦茨使用其R&S CMW500无线电通信测试仪成功验证了工作项目333中的NTN NB-IoT测试案例。这意味着全球认证论坛(GCF)能够在其设备认证计划...

关键字: 物联网 调制解调器 NTN
关闭
关闭