本文中,小编将对AD转换器位数对测量误差的影响予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。
今天,小编将在这篇文章中为大家带来计算开关损耗的方法的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。
LED 照明已成为家庭、商业和工业应用的主导技术。其优点包括效率更高、使用寿命长且易于维护、不含汞或有害紫外线辐射、调光能力强且显色指数高,以及 EMI 低。在本文中,我们将重点介绍英飞凌在LED 驱动器和智能 LED 照明控制方面的一些产品。
当今片上系统 (SoC) 的设计人员对中央处理器 (CPU) 中处理器核心的缓存非常熟悉。对主外部存储器的读取或写入访问可能非常耗时,可能需要数百个 CPU 时钟周期,同时处理器处于空闲状态。尽管单个存储器访问所消耗的功率很小,但当每秒执行数十亿次事务时,功率就会迅速增加。
老化测试涉及将组件暴露在高温和高压下。这种类型的半导体生产测试可让工程师、制造商和其他相关专业人员大幅缩短缺陷出现并可能损害可靠性的时间。老化测试应如何融入整体质量控制计划?以下是公司官员在实施此流程时应该了解的内容。
多年来,只要看一下电量表,我们就能得到一个直接的答案:我们还能继续开车多久?如今,这个世界充满了电池供电的设备,从笔记本电脑和手机到电动汽车和医疗设备,准确预测剩余运行时间变得至关重要。
现代电源设计必须考虑多种因素日益增长的需求。高效率是这些考虑因素中最重要的一个。然而,随着设备尺寸的缩小和功能性的增加,实现高效率可能很困难。
宽带隙半导体材料氮化镓 (GaN) 具有出色的电气和光学特性,可用于各种电子和光电设备。然而,与其他半导体相比,其固有热导率明显较低。硅掺杂可以显著影响块状氮化镓 (GaN) 的热导率。
石墨烯是一种以蜂窝状晶格排列的单层碳原子,在自旋电子学中具有重要应用。石墨烯具有较长的自旋寿命(指电子保持自旋状态的时间)和较高的电子迁移率(使电子能够快速移动)。这些因素对于自旋电子学至关重要,自旋电子学是一门探索利用电子自旋进行信息处理的领域。
运算放大器 (Op-Amp) 是工业和消费电子产品中的基本元件,其用途广泛,从简单的任务(如基本放大和缓冲)到复杂的功能(如模拟数字转换、音频处理和传感器信号放大)。尽管运算放大器无处不在,但其一直存在一个问题,即热漂移 — 即放大器的输入失调电压随时间和温度波动而变化的现象。
石墨烯在导电机制(电子和空穴)方面与半导体的行为相似,但不同之处在于它在绝对零度时不是绝缘体。在本教程中,我们将了解量子统计力学可以告诉我们什么。
如今,锂离子/锂聚合物被广泛用于经常充电的便携式电子设备。高效的充电方法可以延长电池的使用寿命并提高其性能。因此,电子设计师在设计符合工业要求的电池供电设备时,必须了解理想的充电程序。
本文从工作电压范围、浪涌电流能力、能量吸收能力、成本等方面比较了各种电压钳位元件(例如金属氧化物压敏电阻 [MOV]、瞬态电压抑制 [TVS] 二极管、基于电容器的缓冲电路等)。
单节电池(如锂离子/聚合物)的额定电压低于 5V,不适合 5V 逻辑应用(如为 Arduino 板供电)。此外,电池电压会随着使用时间的推移而下降。第一个解决方案可能是使用简单的 LDO(低压差线性稳压器)或降压/升压转换器。使用 LDO 的问题在于 LDO 适合将电压调节到低于电池电压的水平(如 3.3V)。同样,降压转换器适合构建较低的电压。解决方案似乎是使用 DC-DC 升压转换器,但是,当输入和输出电压差较小且电流处理、电路板尺寸和效率很重要时,简单的升压转换器无法解决问题。
我们通过费米理想气体模型解释了半导体的行为,考虑了两个不同的物理系统:电子和空穴。我们认为,这有点牵强,在本教程中,我们引入了具有可变粒子数的理想费米气体的概念。