当前位置:首页 > 模拟 > 模拟技术
[导读]MOS管开通过程将是下述内容的主要分析内容,通过这篇文章,小编希望大家可以对MOS管的相关情况以及信息有所认识和了解,详细内容如下。

MOS管开通过程将是下述内容的主要分析内容,通过这篇文章,小编希望大家可以对MOS管的相关情况以及信息有所认识和了解,详细内容如下。

一、MOS管

MOS管是一种由金属氧化物半导体构成的三极管,它的工作原理是通过控制门电压来控制通过源极和漏极的电流。当门电压为正时,源极和漏极之间的电容会被放电,从而使源极和漏极之间的电压差变小,从而使源极和漏极之间的电流增大;当门电压为负时,源极和漏极之间的电容会被充电,从而使源极和漏极之间的电压差变大,从而使源极和漏极之间的电流减小。

MOS管是由源极、漏极、门极和金属氧化物层组成,其中金属氧化物层是MOS管的核心部分,它由一层金属和一层氧化物组成,金属层和氧化物层之间有一个很小的空隙,这个空隙可以控制电子的流动,从而控制MOS管的电流。

MOS管可以根据其结构特点分为两大类:一类是普通MOS管,它的结构由源极、漏极、门极和金属氧化物层组成;另一类是双极MOS管,它的结构由源极、漏极、门极和两层金属氧化物层组成。

MOS管的特点有:

1、高静态电流放大倍数:MOS管的静态电流放大倍数比普通晶体管要高得多;

2、低噪声:MOS管的噪声水平比普通晶体管要低得多;

3、低功耗:MOS管的功耗比普通晶体管要低得多;

4、高频特性:MOS管的频率特性比普通晶体管要高得多。

MOS管的应用非常广泛,它可以用于电路的放大、滤波、改变频率、控制电流、控制电压等。它还可以用于电脑、电子设备、汽车电子系统、家用电器、通信设备等。

二、MOS管开通过程分析

关于MOS管的开通过程,网络上有许多文档进行分析,其来源应为一篇带感性负载的MOS管开通过程的分析,很多转发该文章的网文却常常忽略了这一点,把这个过程当做了所有场景下MOS的开通过程。因此,在分析之前,先说明本文分析的前提:阻性负载下,VDS固定时,加驱动电压VGS的情况下,MOS管的导通过程分析。

图1 带阻性负载的MOS管电路

带阻性负载的MOS管电路模型如图1所示,其在GS、GD、DS之间都有寄生电容,在DS之间还有一个寄生二极管。在t0时刻,MOS管栅极加驱动电压VGS,其值为MOS管完全导通所需要的驱动电压VGS(sat),其开通过程中,VDS、VGS、ID的变化如图2所示。分析如下:

图2 MOS管开通过程

t0~t1:在此区间内,VGS给Cgs充电,但由于Cgs两端电压尚未上升到MOS管的阈值电压,所以MOS管处于截止状态。另外,由于VDD一直存在,所以Cgd的电压应该是从-VGD逐渐上升的(D极电压大于G极)。

t1~t2:t1时刻,Cgs两端电压大于MOS的导通压,此时MOS管开始导通,漏极电流形成,Cgd通过MOS管开始放电,VDS也开始下降。这段时间里,VGD<0

MOS管处于夹断状态,工作在饱和区。

t2~t3:t2时刻,VDS两端电压下降到与VGS一致,此时VGD=0,MOS管进入密勒平台,栅极电流开始给Cgd充电,由于VGD开始上升,靠近漏极一侧的导电沟道逐渐变宽,MOS管夹断现象开始消失,导电沟道的扩宽使得VDS迅速下降。到t3时刻,VGD=Vth,MOS管的VGD上升到预夹断电压上,此阶段,MOS管依然工作在饱和区,而在密勒平台,VGS基本不变,因此,ID无变化。

t3~t4:t3时刻后,由于VGD>Vth,MOS管进入可变电阻区,在密勒平台的持续时间里,VDS的压降会降至基本等于饱和导通压降(否则栅极电流应该还是大部分会给Cgd充电,Cgs电压不会抬高),此时VGS不变,VDS下降,MOS管工作在可变电阻区,那么按照MOS管的工作特性曲线,ID应略有下降。

t4~t5:t4时刻,MOS管的密勒平台结束,Cgs继续充电至VGS(sat),ID随着VGS的增大而增大(导电沟道扩宽使导通电阻变小,ID上升,前提是负载足够重),此时MOS管饱和导通,工作在可变电阻区。

后续,若负载继续加重,使漏极电流继续上升,则MOS管的电流将会饱和,MOS管进入饱和区。

以上所有内容便是小编此次为大家带来的有关MOS管的所有介绍,如果你想了解更多有关它的内容,不妨在我们网站进行探索哦。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭