当前位置:首页 > 工业控制 > 工业控制
[导读]随着现代工业对精密化、高速化、高性能的要求的不断发展,传统的控制器在高要求的场合已经不能够胜任,在很多要求高实时性,高效率的场合,就必须要用专门的数字信号处理器(DSP)来代替传统的控制器的部分功能。特别是

随着现代工业对精密化、高速化、高性能的要求的不断发展,传统的控制器在高要求的场合已经不能够胜任,在很多要求高实时性,高效率的场合,就必须要用专门的数字信号处理器(DSP)来代替传统的控制器的部分功能。特别是在控制算法复杂或对算法进行改进优化的时候,DSP独特的快速计算的能力就明显的体现出来。

另外,随着集成电路制造技术的进步和电力电子技术的发展,交流伺服也得到了长足的发展。集三相逆变器和保护电路、隔离电路、能耗制动电路等功能为一体的智能功率模块、先进的电力电子器件的出现、使交流伺服控制更方便、功耗更低、开关时间更短、变频范围更宽、性能更优越。这些都使交流伺服相对直流伺服体现出了明显的优越性。

1 系统概述

交流伺服数字化系统的硬件由DSP作为信号处理器,用旋转编码器和电流传感器提供反馈信号,智能功率模块IPM作为逆变器,经传感器出来的信号经过滤波整形等处理后反馈给DSP进行运算,DSP经过对参考信号和反馈信号的处理运算来调节伺服系统的电流环,速度环,和位置环的控制,最后输出PWM信号经过隔离驱动IPM模块实现电机的伺服闭环控制。系统的硬件结构如图1所示。

 


 

图1硬件结构图


系统的控制为三环控制方式,位置控制是外环,也是最终目标,速度控制是中环,电流控制是内环。为了保证动态响应速度和定位时不产生震荡,电流环和速度环均采用PID调节,位置调节器采用PI调节。系统的控制框图如图2:

 

 

图2控制系统框图


编码器检测的转子位置实际信号与系统给定位置信号进行比较,比较后的差值经位置调节器PI调节后输出转子转速给定信号,给定转速信号再与编码器检测的实际速度信号进行比较,比较后的差值经速度调节器调节后,输出给定电流指令值,在于电流反馈实际值比较后进行PWM控制。

2 矢量控制

在同步电机中,励磁磁场与电枢磁通势间的空间角度不是固定的,因此调节电枢电流就不能直接控制电磁转矩。通过电机的外部控制系统,对电枢磁通势相对励磁磁场进行空间定向控制,控制两者之间的角度保持固定值,同时对电枢电流的幅值也进行控制,这种控制方式就称为矢量控制。

矢量控制也就是通过控制两相的转子参考坐标d-q轴的电流来等效控制电枢的三相电流。通过前面的系统控制框图可以清楚理解这种等效,可以用下面的公式表示:

 

(1)


由电机非负载轴端安装的编码器随时检测转子磁极位置,不断的取得位置角信息,通过检测实时的知道了θ,也就是说能够进行实时的坐标变化,变换后的电流对逆变器进行控制,产生PWM波形去控制电机。

3 位置及速度的检测

交流伺服电机内装有编码器进行位置及速度的测量,大多数情况下,直接从编码器出来的信号波形不规则,还不能直接用于控制,信号处理和远距离传输,所以要对信号进行整形和滤波变成矩形波后再反馈给DSP,处理后的两路相互正交的编码器信号A、B经过电压变换直接送入DSP的QEP引脚,经译码逻辑单元产生转向信号和4倍频的脉冲信号。转向信号是根据两路信号的相位超前滞后决定的。由于存在正反转的问题,要求计数器具有可逆性,所以把通用定时器2设置为定向增减计数模式,把倍频后的正交编码脉冲作为定时器2的输入时钟进行计数,计数的方向由转向信号决定,如果QEP1的输入相位超前,则增计数,反之则减计数。位置和转速由脉冲数和脉冲频率就可以决定。每转的总脉冲数用M表示,T1时刻的脉冲数为m1,则电机转过的角度就可以根据下式计算出来。

 

(2)


如果是多转的情况下,再配合编码器的Z相零位脉冲的计数值和相应定时器2的清零,就可以知道电机轴转了多少圈多少角度了。电机转子转速的计算可以根据MT测速法,确定编码器的速度公式如下:

 

(3)


M1—定时间内计数器记录的编码器脉冲数;

M2—定时间内记录的DSP的时钟脉冲数;

N—编码器线数,也就是倍频前的编码器的脉冲数;

Fclk—DSP的时钟脉冲频率。

4 结语

综上所述,本文研究的数字交流伺服驱动器,实行了模块化设计,硬件结构简单,软件编程容易。可以轻松实现PC机或者PLC与控制器的通信,这样就实现了上位机能够接受控制系统的实时参数和向伺服控制系统传递参数,对伺服系统进行直接的控制。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

摘要:永磁同步电机因其体积小、结构简单、效率高的优点在工业的伺服控制中得到了广泛应用,其高性能的控制算法是应用的核心。现介绍了永磁同步电机的矢量控制模型,提出了一种改进型线性自抗扰控制算法,设计了永磁同步电机速度环和位置...

关键字: 永磁同步电机 矢量控制 线性自抗扰控制器

摘要:横向介绍了暖通行业各种压缩形式的技术特点,同时纵向介绍了螺杆机、离心机和永磁同步电机的关键技术,从原理和结构两个方面对各种压缩形式进行了分析比较,对选择压缩形式有很大的帮助。

关键字: 螺杆机 离心机 永磁同步电机

摘要:伺服电机作为自动化控制系统中的重要部件,具有结构更紧凑、响应性能良好以及动态刚性更高等优点,极大地提高了伺服系统的快速反应能力、运动精度和高速进给能力,能更好地适应更高的生产效率,满足现代数控车床产品高速运转和进行...

关键字: 永磁同步电机 特性 应用

摘 要:针对速度反馈编码器给永磁同步电动机(PMSM)控制系统带来的问题 ,研究了一种使用脉振高频电压信号注入法来检测 永磁同步电机实时位置的矢量控制系统。无论是内埋式还是面贴式永磁同步电机 ,其交直轴高频阻抗都可以...

关键字: 永磁同步电机 脉振高频信号注入 开环矢量控制

摘要:永磁同步电机具有设计简单、性能良好等优势,其应用价值已得到了证实。但受数字控制系统延时等问题的影响,永磁同步电机的动态性能极易出现损失。基于此,首先简要阐述了永磁同步电机的结构,介绍了用于永磁同步电机预测电流控制的...

关键字: 扰动观测器 永磁同步电机 预测电流

北卡罗来纳州夏洛特2022年5月5日 /美通社/ -- 霍尼韦尔(纳斯达克代码:HON)近日公布了2022年第一季度业绩,在充满挑战的运营环境下实现了业绩指标达到或超出业绩指导预测范围。此外,公司还上调了全年销售额指导范...

关键字: 霍尼韦尔 ANTI ADAM 控制技术

在这篇文章中,小编将对CPU的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: CPU 中央处理器 控制技术

摘要:由于转子永磁体和定子铁芯之间存在极强的电磁吸力,当转子旋转时会引起电机定子的机械振动。现对不同转子结构的永磁同步电机的电磁振动问题进行分析比较,包括表面式、内置式转子结构,其中内置式转子结构又分径向式和切向式转子结...

关键字: 永磁同步电机 电磁力 电磁振动

数控机床是数字控制机床(Computer numerical control machine tools)的简称,是一种装有程序控制系统的自动化机床。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,并将其译...

关键字: 数控机床 机电一体化 控制技术

摘要:针对交流永磁电机控制系统中电机参数变化及负载扰动等影响系统性能的问题,提出将二阶自抗扰控制器应用于交流永磁电机控制系统,从而取代传统的PI速度调节器。该速度控制策略不依靠系统模型来估计及补偿内外部实时扰动带来的影响...

关键字: 永磁同步电机 二阶自抗扰 鲁棒性

工业控制

13478 篇文章

关注

发布文章

编辑精选

技术子站

关闭