当前位置:首页 > EDA > 电子设计自动化
[导读]温度补偿石英晶体振荡器(TCXO)由于具有较高的频率稳定度,作为一种高精度频率源被广泛地应用于通讯系统、雷达导航系统、精密测控系统等。温补晶振由石英晶体振荡电路和温度补偿网络两部分组成。其中,温度补偿网络的

温度补偿石英晶体振荡器(TCXO)由于具有较高的频率稳定度,作为一种高精度频率源被广泛地应用于通讯系统、雷达导航系统、精密测控系统等。温补晶振由石英晶体振荡电路和温度补偿网络两部分组成。其中,温度补偿网络的优化设计对于改善温补晶体振荡器的温频特性,提高振荡器的频率精度具有重要意义。
1 温补晶振温度补偿原理

温补晶振由石英晶体振荡电路和温度补偿网络两部分组成。典型的温补晶振原理示意图如图1所示。

振荡器的频率温度特性主要由晶体谐振器的频率温度特性决定。常用的AT切晶体谐振器的频率温度特性为三次曲线,温补晶振温度补偿的原理就是通过改变振荡回路中的负载电容,使其随温度变化来补偿谐振器由于环境温度变化所产生的频率漂移。

图1中变容二极管D两端所加电压(即补偿电压)由温补网络输出,温补网络随温度自动调节输出电压,变容二极管容量随之改变,以抵消谐振器频率随温度的变化,可使输出频率基本不变。

从以上原理分析可得温补晶振补偿过程如下:

(1)测试出补偿电压一温度曲线(V-T曲线);

(2)根据V-T曲线数据,计算热敏网络中各电阻的阻值;

(3)装配温补网络,测试成品振荡器f-T曲线,评价论证补偿效果。

可以看出,获得准确的V-T曲线参数是温补晶振设计生产中的关键环节,直接关系到振荡器频率精度的高低,关系着成品温补晶振品质的优劣。

2 系统硬件组成及测试过程

温补网络补偿电压的测量多为人工手动完成。用小功率直流电压源代替温补网络,改变温度到目标点并保温,然后调节电压源输出,使振荡器输出达到中心频率,此时电压源输出即为该温度点的补偿电压;在各测试温度点重复以上操作,得到一组数据,即V-T曲线数据。这种手动测量方法效率低下,人力成本较高,而且手工记录测试数据,容易产生误差,难以实现精确快速的优质生产。

本文设计提出一种温补网络补偿电压的自动测试方法,对该过程实现了自动控制与测量。

2.1 系统硬件组成

温补网络补偿电压自动测试系统以计算机为控制核心,结合应用软件,实现了补偿电压测试过程的自动化测试。系统可以完成设备自动控制,仪器的自动测试,数据存储以及数据分析等功能,大大提高了测试速度,节省了工作时间,还可以提高测试准确度,比传统的人工手动测试具有明显的优越性。

本系统以计算机为控制中心,包括高低温箱、程控电源、数字频率计和数字万用表等设备。系统结构示意图如图2所示。

(1)高低温箱S&A4220MR

支持GPIB接口程控,满足-50~+80℃测试要求,箱内的测量圈设有50个工位,每个工位通过5根导线连接一个待测补偿电压的半成品活件,分别接活件的GND,VCC,VDD,OUT和E+,高低温箱与外部仪表连接如图3所示。

(2)程控电源Agilent3631A

支持GPIB接口程控,满足独立双路供电,其中0~6 V为E+供电,其分辨率可达2 mV以内;0~25 V为TCXO系统提供工作电压。

(3)数字频率计EE3386A1

支持串口程控,用于获取TCXO输出频率。

(4)FLUKE45万用表

支持串口程控,用于获取TCXO内部三端稳压器的输出电压VDD,为补偿网络分析计算辅助数据。

2.2 补偿电压自动测试过程

根据系统硬件组成与测试目的要求,补偿电压自动测试过程如下:

将未装配补偿网络的待测半成品活件装入高低温箱,连接好各仪器设备,打开电源,运行程序,进行参数设置(如工作电压为8 V,中心频率为19.2 MHz,测试温度范围为-40~+70℃,10℃步进);点击开始按钮,程序控制高低温箱自动回0号参考工位,开始降温至-40℃,保温30 min后,工位进1,根据1号位活件设置调节程控电源工作电压输出,获取振荡器频率,变化E+,使振荡器频率越来越接近中心频率,直到满足要求,记录此时程控电源的E+即为所测补偿电压结果,同时记录振荡器内为温补网络供电的稳压器输出电压VDD;然后高低温箱轮位进1,移向2号位测量,直到所有工位测试完毕;开始升温10℃至-30℃,保温20 min,测试记录数据,完成所有工位测试;继续升温,保温、测量,直至全部温度点测试完毕,一个测试过程完成。

3 软件组成

应用软件采用VB 6.0编写,后台数据库采用Microsoft Access数据库。运行软件,可以对程控仪器设备进行操作和控制,实现测试过程的自动控制、数据自动测试以及自动记录,为温补晶振补偿网络参数计算过程提供准确可靠的输入数据。

应用软件主要分为3个模块:活件参数管理模块,自动测试模块以及数据处理与存储模块。

3.1 活件参数管理模块

活件参数管理模块是系统控制软件的最上层,它直接面向用户,提供系统数据信息:用户在测试前需要设置相关参数,如设备信息录入,产品编号设置,高低温箱轮位、温度及步进参数等;自动测试过程中显示系统当前工作状态,如当前轮位、当前温度、E+、VDD等实时数据,也可显示其他历史数据;同时提供对用户的误操作进行处理、提示及相应的帮助系统。

3.2 自动测试模块

自动测试模块是系统功能的具体实施部分,能够对程控仪器的工作状态进行控制检测。

自动测试模块通过调用动态链接库函数VISA32.DLL来控制系统所用的GPIB设备或仪器,用VB自带MSCOMM32.OCX控件对系统中的串口程控仪器进行控制。该测试模块是系统软件中较关键也较复杂的部分,需要充分了解仪器功能及程控指令系统,并根据控制过程安排程序指令顺序。

下面就系统中程控设备的设置控制语句做关键性说明。

3.3 数据处理与存储模块

数据存储模块是测试系统的重要组成部分,它由活件信息表,仪器设备信息表及测试数据表等组成,主要完成系统各仪器的基本信息、测试过程及测试数据的管理工作。在系统工作界面中通过相关控件可浏览、调用、修改及编辑相关数据。

3.4 系统软件流程图

根据系统硬件组成与测试过程要求,软件流程图如图4所示。

4 结语

本系统以计算机为控制中心,结合应用软件,实现了温补晶振补偿网络补偿电压的自动测试,系统中仪器设备的功能量程设置、数据的获取记录等均由计算机来完成,使数据更加准确、可靠,并且大大缩短了测试时间,提高了工作效率和产品质量。本系统投入使用后,经过实践和进一步改善,系统中各设备仪器工作正常有序,稳定可靠,满足了用户的需求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在许多无线基站应用中,隔离电源转换器的电源是通过 -48 V 电源提供的。通信基站使用-48V电源很大部分有历史原因,历史上,通信行业设备一直使用-48V直流供电。-48V也就是正极接地。

关键字: GSM 电流 电压

实验通过光耦实现输出和输入的隔离,不仅提高了电源的效率,简化了外围电路,也降低了电源的成本和体积,使电源具有输出电压稳定,纹波小等优点。

关键字: 光耦 电压 纹波

开关电源在负载短路时会造成输出电压降低,同样在负载开路或空载时输出电压会升高。在检修中一般采用假负载取代法,以区分是电源部分有故障还是负载电路有故障。

关键字: 开关电源 假负载 电压

与许多工程决策一样,选择使用什么电阻值是一种权衡。较高值的电阻器会产生较高的 IR 压降和其端子上的电压,从而简化电压检测并提高 SNR。

关键字: 电阻值 IR 压降 电压

电源波动:电源电压的微小变化都能引起输出电压的漂移。例如,当电源电压变化时,三极管的静态电流和集电极电阻上的压降都会发生变化,从而影响输出电压。

关键字: 零点漂移 电源波动 电压

电路功率元件由标准的boost电路组成,通过电压和电流的双重反馈,其中电压位于外环,而电流位于内环。因此,APFC在保证输出端恒定电压的同时,使得电流的波形为正弦波。

关键字: 电路 功率元件 电压

晶振(XO)输出波形(Output Type)是与封装尺寸一样重要的一个技术指标,这些输出波形可简单归为两种:正弦波、方波。

关键字: 正弦波 方波 晶振

当电流增大时TL431-1的电位被太高,从而起到现在电流的功能,因为R3的存在对输出电压进行了补偿.所以基本上可以做到限流稳压功能为一体, 具有相对的成本优势。

关键字: TL431-1 电流 电压

为增进大家对晶振的认识,本文将对晶振不起振的原因以及晶振的一些其它问题予以介绍。

关键字: 晶振 指数 振荡电路

为增进大家对晶振的认识,本文将对晶振在无线通信系统中的核心作用予以介绍,并讲述一些晶振设计过程中的建议。

关键字: 晶振 指数 无线通信
关闭
关闭