当前位置:首页 > 单片机 > 单片机
[导读]  Output Compare is a powerful feature of embedded world. The PIC32 Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a

  Output Compare is a powerful feature of embedded world. The PIC32 Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation. The following are some of the key features:


?Multiple Output Compare modules in a device

?Programmable interrupt generation on compare event

?Single and Dual Compare modes

?Single and continuous output pulse generation

?Pulse-Width Modulation (PWM) mode

?Hardware-based PWM Fault detection and automatic output disable

?Programmable selection of 16-bit or 32-bit time bases

?Can operate from either of two available 16-bit time bases or a single 32-bit time base

?ADC event trigger


  At the moment, I just set the Output Compare work in PWM mode. The PWM duty is increasing by little and little at the beginning. Then PWM duty is decreasing by little and little. This application run on my PIC32MZ EC Starter Kit, and the PWM drives a LED. So you can see the LED flux is changing from dim to bright and reverse. Blow is the copy of my application code.


#include

#include

#pragma config FMIIEN = ON // Ethernet RMII/MII Enable (MII Enabled) // need a 25MHz XTAL in MII mode, a 50MHz Clock in RMII mode.

#pragma config FETHIO = ON // Ethernet I/O Pin Select (Default Ethernet I/O)

#pragma config PGL1WAY = ON // Permission Group Lock One Way Configuration (Allow only one reconfiguration)

#pragma config PMDL1WAY = ON // Peripheral Module Disable Configuration (Allow only one reconfiguration)

#pragma config IOL1WAY = ON // Peripheral Pin Select Configuration (Allow only one reconfiguration)

#pragma config FUSBIDIO = OFF // USB USBID Selection (Controlled by Port Function)

// DEVCFG2  7FF9B11A

#pragma config FPLLIDIV = DIV_3 // System PLL Input Divider (3x Divider)

#pragma config FPLLRNG = RANGE_5_10_MHZ // System PLL Input Range (5-10 MHz Input)

#pragma config FPLLICLK = PLL_POSC // System PLL Input Clock Selection (POSC is input to the System PLL)

#pragma config FPLLMULT = MUL_50 // System PLL Multiplier (PLL Multiply by 50) //PLL must output between 350 and 700 MHz

#pragma config FPLLODIV = DIV_2 // System PLL Output Clock Divider (2x Divider)

#pragma config UPLLFSEL = FREQ_24MHZ // USB PLL Input Frequency Selection (USB PLL input is 24 MHz)

#pragma config UPLLEN = OFF // USB PLL Enable (USB PLL is disabled)

// DEVCFG1  7F7F3839

#pragma config FNOSC = SPLL // Oscillator Selection Bits (System PLL)

#pragma config DMTINTV = WIN_127_128 // DMT Count Window Interval (Window/Interval value is 127/128 counter value)

#pragma config FSOSCEN = OFF // Secondary Oscillator Enable (Disable SOSC)

#pragma config IESO = OFF // Internal/External Switch Over (Disabled)

#pragma config POSCMOD = EC // Primary Oscillator Configuration (External clock mode)

#pragma config OSCIOFNC = ON // CLKO Output Signal Active on the OSCO Pin (Enabled)

#pragma config FCKSM = CSDCMD // Clock Switching and Monitor Selection (Clock Switch Disabled, FSCM Disabled)

#pragma config WDTPS = PS1048576 // Watchdog Timer Postscaler (1:1048576)

#pragma config WDTSPGM = STOP // Watchdog Timer Stop During Flash Programming (WDT stops during Flash programming)

#pragma config WINDIS = NORMAL // Watchdog Timer Window Mode (Watchdog Timer is in non-Window mode)

#pragma config FWDTEN = OFF // Watchdog Timer Enable (WDT Disabled)

#pragma config FWDTWINSZ = WINSZ_25 // Watchdog Timer Window Size (Window size is 25%)

#pragma config DMTCNT = DMT31 // Deadman Timer Count Selection (2^31 (2147483648))

#pragma config FDMTEN = OFF // Deadman Timer Enable (Deadman Timer is disabled)

// DEVCFG0  FFFFFFF7

#pragma config DEBUG = OFF // Background Debugger Enable (Debugger is disabled)

#pragma config JTAGEN = ON // JTAG Enable (JTAG Port Enabled)

#pragma config ICESEL = ICS_PGx2 // ICE/ICD Comm Channel Select (Communicate on PGEC2/PGED2)

#pragma config TRCEN = ON // Trace Enable (Trace features in the CPU are enabled)

#pragma config BOOTISA = MIPS32 // Boot ISA Selection (Boot code and Exception code is MIPS32)

#pragma config FECCCON = OFF_UNLOCKED // Dynamic Flash ECC Configuration (ECC and Dynamic ECC are disabled (ECCCON bits are writable))

#pragma config FSLEEP = OFF // Flash Sleep Mode (Flash is powered down when the device is in Sleep mode)

#pragma config DBGPER = ALLOW_PG2 // Debug Mode CPU Access Permission (Allow CPU access to Permission Group 2 permission regions)

#pragma config EJTAGBEN = NORMAL // EJTAG Boot (Normal EJTAG functionality)

// DEVCP0

#pragma config CP = OFF // Code Protect (Protection Disabled)


#define Mvec_Interrupt() INTCONSET = 0x1000; asm volatile("ei");


#define OC1_VALUE (PORTD & 0x2)

#define OC_MAX (0x7A120)

#define OC_MIN (0x0)

#define STEP_VALUE (500)


#define LED_IOCTL() TRISHCLR = (1<<0)

#define LED_SETON() LATHSET = (1<<0)

#define LED_SETOFF() LATHCLR = (1<<0)

#define LED_ONOFF() LATHINV = (1<<0)

#define LED_OPEN() ANSELH &= 0xFFFFFFFE


typedef enum _eRUN_MODE

{

Stable1,

Welcome,

Stable2,

Goodbye,

} eRUN_MODE;

eRUN_MODE LED_RunMode;


void OC1_Init(void)

{

OC1CON = 0x0000;

RPD1R = 0xC;

OC1RS = OC_MIN;

OC1R = OC_MIN;

OC1CON = 0x2E;

OC1CONSET = 0x8000; // Enable OC

}

void LED_Init(void)

{

LED_SETOFF();

LED_OPEN();

LED_IOCTL();

LED_RunMode = Stable1;

}


void T23_Init(void)

{

T2CON = 0x0;

T3CON = 0x0;

TMR2 = 0;

TMR3 = 0;

//IPC3SET = 0x50000;

IPC3SET = 0x120000;

IEC0SET = 0x4000;

IFS0CLR = 0x4000;

PR2 = 0xA120;

PR3 = 0x7;


T2CON = 0x0008;

T2CON |= 0x8000;

}

void T45_Init(void)

{

T4CON = 0;

T5CON = 0;

TMR4 = 0;

TMR5 = 0;

IPC6SET = 0x6;

IFS0CLR = 0x1000000;

IEC0SET = 0x1000000;

PR4 = 0xE100;

PR5 = 0x05F5;

T4CON = 0x0008;

T4CON |= 0x8000;

}


void LED_Scheduler(void)

{

if (OC1_VALUE == 0x2)

{

LED_SETON();

}

else

{

LED_SETOFF();

}

}


void __ISR(_TIMER_3_VECTOR,ipl4AUTO) T23_Handler(void)

{

if (LED_RunMode == Stable1)

{

; // do nothing

}

else if (LED_RunMode == Stable2)

{

; // do nothing

}

else if (LED_RunMode == Welcome)

{

OC1RS = OC1RS + STEP_VALUE;

if (OC1RS >= OC_MAX)

{

T4CON = 0x0008;

TMR4 = 0;

TMR5 = 0;

PR4 = 0xE100;

PR5 = 0x05F5;

T4CON = 0x8008;

IFS0CLR = 0x1000000;

LED_RunMode = Stable2;

}

}

else // LED_RunMode == Goodbye

{

OC1RS = OC1RS - STEP_VALUE;

if (OC1RS == OC_MIN)

{

T4CON = 0x0008;

TMR4 = 0;

TMR5 = 0;

PR4 = 0xE100;

PR5 = 0x05F5;

T4CON = 0x8008;

IFS0CLR = 0x1000000;

LED_RunMode = Stable1;

}

}

TMR2 = 0;

TMR3 = 0;

IFS0CLR = 0x4000;

Nop();

}

void __ISR(_TIMER_5_VECTOR,ipl1AUTO) T45_Handler(void)

{

if (LED_RunMode == Stable1)

{

LED_RunMode = Welcome;

//PR5 = 0x98;

PR4 = 0x9680;

PR5 = 0x98;

}

else if (LED_RunMode == Welcome)

{

; // do nothing

}

else if (LED_RunMode == Stable2)

{

LED_RunMode = Goodbye;

//PR5 = 0x98;

PR4 = 0x9680;

PR5 = 0x98;

}

else // LED_RunMode == Goodbye

{

; // do nothing

}

TMR4 = 0;

TMR5 = 0;

IFS0CLR = 0x1000000;

Nop();

}

void main(void)

{

LED_Init();

OC1_Init();

T23_Init();

T45_Init();

Mvec_Interrupt();

while(1)

{

LED_Scheduler();

}

}


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭