当前位置:首页 > 单片机 > 单片机
[导读]这是一个综合的例子,演示了ADC模块、DMA模块和USART模块的基本使用。  我们在这里设置ADC为连续转换模式,常规转换序列中有两路转换通道,分别是ADC_CH10(PC0)和ADC_CH16(片内温度传感器)。因为使用了自动多通道转

这是一个综合的例子,演示了ADC模块、DMA模块和USART模块的基本使用。

  我们在这里设置ADC为连续转换模式,常规转换序列中有两路转换通道,分别是ADC_CH10(PC0)和ADC_CH16(片内温度传感器)。因为使用了自动多通道转换,数据的取出工作最适合使用DMA方式取出,so,我们在内存里开辟了一个u16 AD_Value[2]数组,并设置了相应的DMA模块,使ADC在每个通道转换结束后启动DMA传输,其缓冲区数据量为2个HalfWord,使两路通道的转换结果自动的分别落到AD_Value[0]和AD_Value[1]中。

  然后,在主函数里,就无需手动启动AD转换,等待转换结束,再取结果了。我们可以在主函数里随时取AD_Value中的数值,那里永远都是最新的AD转换结果。

  如果我们定义一个更大的AD_Value数组,并调整DMA的传输数据量(BufferSize)可以实现AD结果的循环队列存储,从而可以进行各种数字滤波算法。

  接着,取到转换结果后,根据V=(AD_Value/4096)*Vref+的公式可以算出相应通道的电压值,也可以根据 T(℃) = (1.43 - Vad)/34*10^(-6) + 25的算法,得到片内温度传感器的测量温度值了。

  通过重新定义putchar函数,及包含"stdio.h"头文件,我们可以方便的使用标准C的库函数printf(),实现串口通信。

  相关的官方例程,可以参考FWLib V2.0的ADCADC1_DMA和USARTprintf两个目录下的代码。

本代码例子是基于STM32F103VBT6

/******************************************************************************

* 本文件实现ADC模块的基本功能

* 设置ADC1的常规转换序列包含CH10和CH16(片内温度传感器)

* 设置了连续转换模式,并使用DMA传输

* AD转换值被放在了AD_Value[2]数组内,[0]保存CH0结果,[1]保存CH16结果

* GetVolt函数计算[0]的值对应的电压值(放大100倍,保留2位小数)

* GetTemp函数计算[1]的值对应的温度值,计算公式在相应函数内有说明

* 作者:jjldc(九九)

*******************************************************************************/

#include "stm32f10x_lib.h"

#include "stdio.h"

#define ADC1_DR_Address ((u32)0x4001244C)

vu16 AD_Value[2];

vu16 i=0;

s16 Temp;

u16 Volt;

void RCC_Configuration(void);

void GPIO_Configuration(void);

void NVIC_Configuration(void);

void USART1_Configuration(void);

void ADC1_Configuration(void);

void DMA_Configuration(void);

int fputc(int ch, FILE *f);

void Delay(void);

u16 GetTemp(u16 advalue);

u16 GetVolt(u16 advalue);

int main(void)

{

RCC_Configuration();

GPIO_Configuration();

NVIC_Configuration();

USART1_Configuration();

DMA_Configuration();

ADC1_Configuration();

//启动第一次AD转换

ADC_SoftwareStartConvCmd(ADC1, ENABLE);

//因为已经配置好了DMA,接下来AD自动连续转换,结果自动保存在AD_Value处

while (1)

{

Delay();

Temp = GetTemp(AD_Value[1]);

Volt = GetVolt(AD_Value[0]);

USART_SendData(USART1, 0x0c); //清屏

//注意,USART_SendData函数不检查是否发送完成

//等待发送完成

while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);

printf("电压:%d.%dt温度:%d.%d℃rn",

Volt/100, Volt%100, Temp/100, Temp%100);

}

}

int fputc(int ch, FILE *f)

{

//USART_SendData(USART1, (u8) ch);

USART1->DR = (u8) ch;

/* Loop until the end of transmission */

while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET)

{

}

return ch;

}

void Delay(void)

{

u32 i;

for(i=0;i<0x4f0000;i++);

return;

}

/*******************************************************************************

* Function Name : GetTemp

* Description : 根据ADC结果计算温度

* Input : u16 advalue

* Output :

* Return : u16 temp

*******************************************************************************/

u16 GetTemp(u16 advalue)

{

u32 Vtemp_sensor;

s32 Current_Temp;

// ADC转换结束以后,读取ADC_DR寄存器中的结果,转换温度值计算公式如下:

// V25 - VSENSE

// T(℃) = ------------ + 25

// Avg_Slope

// V25: 温度传感器在25℃时 的输出电压,典型值1.43 V。

// VSENSE:温度传感器的当前输出电压,与ADC_DR 寄存器中的结果ADC_ConvertedValue之间的转换关系为:

// ADC_ConvertedValue * Vdd

// VSENSE = --------------------------

// Vdd_convert_value(0xFFF)

// Avg_Slope:温度传感器输出电压和温度的关联参数,典型值4.3 mV/℃。

Vtemp_sensor = advalue * 330 / 4096;

Current_Temp = (s32)(143 - Vtemp_sensor)*10000/43 + 2500;

return (s16)Current_Temp;

}

/*******************************************************************************

* Function Name : GetVolt

* Description : 根据ADC结果计算电压

* Input : u16 advalue

* Output :

* Return : u16 temp

*******************************************************************************/

u16 GetVolt(u16 advalue)

{

return (u16)(advalue * 330 / 4096);

}

/*******************************************************************************

* Function Name : RCC_Configuration

* Description : 系统时钟设置

* Input : None

* Output : None

* Return : None

*******************************************************************************/

void RCC_Configuration(void)

{

ErrorStatus HSEStartUpStatus;

//使能外部晶振

RCC_HSEConfig(RCC_HSE_ON);

//等待外部晶振稳定

HSEStartUpStatus = RCC_WaitForHSEStartUp();

//如果外部晶振启动成功,则进行下一步操作

if(HSEStartUpStatus==SUCCESS)

{

//设置HCLK(AHB时钟)=SYSCLK

RCC_HCLKConfig(RCC_SYSCLK_Div1);

//PCLK1(APB1) = HCLK/2

RCC_PCLK1Config(RCC_HCLK_Div2);

//PCLK2(APB2) = HCLK

RCC_PCLK2Config(RCC_HCLK_Div1);

//设置ADC时钟频率

RCC_ADCCLKConfig(RCC_PCLK2_Div2);

//FLASH时序控制

//推荐值:SYSCLK = 0~24MHz Latency=0

// SYSCLK = 24~48MHz Latency=1

// SYSCLK = 48~72MHz Latency=2

FLASH_SetLatency(FLASH_Latency_2);

//开启FLASH预取指功能

FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);

//PLL设置 SYSCLK/1 * 9 = 8*1*9 = 72MHz

RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);

//启动PLL

RCC_PLLCmd(ENABLE);

//等待PLL稳定

while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);

//系统时钟SYSCLK来自PLL输出

RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

//切换时钟后等待系统时钟稳定

while(RCC_GetSYSCLKSource()!=0x08);

}

//下面是给各模块开启时钟

//启动GPIO

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB |

RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD,

ENABLE);

//启动AFIO

RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);

//启

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭