当前位置:首页 > 单片机 > 单片机
[导读]单片机结构和原理

89C51单片机结构框图

 

1、一个8位 的微处理器CPU。

2、片内数据存储器(RAM128B/256B):用以存放可以读/写的数据,如运算的中间结果、最终结果以及欲显示的数据等。

3、片内4kB程序存储器Flash ROM(4KB):用以存放程序、一些原始数据和表格。

4、四个8位并行I/O(输入/输出)接口 P0~P3:每个口可以用作输入,也可以用作输出。

5、两个或三个定时/计数器: 每个定时/计数器都可以设置成计数方式,用以 对 外部事件进行计数,也可以设置成定时方式,并可以根据计数或定时的结果 实现计算机控制

6、一个全双工UART的串行I/O口:可实现单片机与单片机或其它微机之间串行通信。

7、片内振荡器和时钟产生电路:但需外接晶振和电容。

8、五个中断源的中断控制系统。

9、具有节电工作方式:休闲方式及掉电方式。

在空闲方式中,CPU停止工作,而RAM、定时器/计数器、串行口和中断系统都继续工作。此时的电流可降到大约为正常工作方式的15%。在掉电方式中,片内振荡器停止工作,由于时钟被“冻结”,使一切功能都暂停,故只保存片内RAM中的内容,直到下一次硬件复位为止。这种方式下的电流可降到15 μA以下,最小可降到0?6 μA。

结构:

由中央处理单元(CPU)、存储器(ROM及RAM)和I/O接口组成。89C51单片机内部结构如图所示:

 

下面介绍的是mcs-51

MCS-51单片机存储器的配置特点

① 内部集成了4K的程序存储器ROM;

② 内部具有256B的数据存储器RAM;

③ 可以外接64K的程序存储器ROM和 数据存储器RAM。

从物理结构的角度讲,51单片机的存储系统可以分为四个存储空间:既片内ROM,RAM和片外ROM、RAM。

从逻辑上讲(既编程的角度),51单片机的存储系统实际上分为三个存储空间。

1. 片内数据存储器RAM;

2. 片外数据存储器RAM;

3. 片内或外的程序存储器ROM(由EA电平决定)。

 

1.程序存储器ROM用于存放程序、常数或表格。

2.在51单片机中,由引脚 /EA 上的电平选择内、外ROM: EA=1时,CPU执行片内的4KROM中的程序; EA=0时,CPU选择片外ROM中的程序。

3.无论是使用片内还是使用片外ROM,程序的起始地址都是从ROM的0000H单元开始。

4.尽管系统可以同时具备片内ROM和外部ROM,但是在一般正常使用情况下,通过/EA的设定来选择其一(或者使用内部ROM,或者使用外部ROM)。

5.如果EA=1(执行片内程序存储器中程序时):如果程序计数器的指针PC值超过0FFFH(4K)时,单片机就要自动的转向片外的ROM存储器且从1000H单元开始执行程序(无法使用片外ROM的低4K空间)。

6.当程序超过4K时,有两种使用程序存储器ROM的方法:

①设置EA=0,使用外部ROM。从地址=0000H开始;

②设置EA=1,使用内部的4KROM和外部ROM(地址从1000H开始的单元)。

 

程序存储器六个特殊的单元:

在ROM中有六个单元具有特定功能。

0000H单元:复位时程序计数器PC所指向的单元,因此用来 存放程序中的第一条指令;

0003H单元:外部中断/INT0的矢量入口地址;

000BH单元:定时器T0溢出中断的矢量入口地址;

0013H单元:外部中断/INT1的矢量入口地址;

001BH单元:定时器T1的溢出中断矢量入口地址;

0023H单元:串行口接收、传送的中断矢量入口地址。

矢量入口单元:在编写中断程序时,写入对应的“跳板指令”

 

单片机第一条指令的两个特征:

①存放在ROM的0000H单元;

②必须是“跳转指令”以跳过下面的5个中断矢量,转到后面的真正的主程序入口0100H单元。

ORG 0000H LJMP 0100H

ORG 0100H

START: MOV A,#00H

∶ ∶

∶ ∶

∶ ∶

∶ ∶

END

外部程序存储器:

当单片机使用外ROM存储器时(扩展系统),必须设定/EA=0,此时单片机的端口功能就要发生相应的改变:

① P0、P2作为外部ROM的地址和数据总线;

② 使用引脚/psen信号来选通外部ROM的数据三态输出。

 

内部数据存储器RAM:

无论在物理上还是逻辑上,系统中RAM 都可分为两个独立空间:内部和外部RAM。由不同的指令来访问。

1.访问内部数据存储单元时,使用 MOV 指令;

2.访问外部数据存储器时,使用 MOVX 指令。内部RAM从功能上将256B空间分为二个不同的块:

1.低128B的RAM块;

2.高128B的SFR(Special Function Register )块。

在低128B的RAM存储单元中又可划分为:

1.工作寄存器区;

2.位寻址区;

3.通用存储数据的“便签区”。

高128B的专用寄存器区SFR中仅仅使用了21寄存器(51系列),其它107个单元不能使用。

 

 

 

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭