当前位置:首页 > 单片机 > 单片机
[导读]SI2I2C总线是PHLIPS公司推出的一种串行总线,是具备多主机系统所需的包括总线裁决和高低速器件同步功能的高性能串行总线。

SI2I2C总线是PHLIPS公司推出的一种串行总线,是具备多主机系统所需的包括总线裁决和高低速器件同步功能的高性能串行总线。

I2C总线只有两根双向信号线。一根是数据线SDA,另一根是时钟线SCL。

一.I2C系统结构

 

每个接到I2C总线上的器件都有唯一的地址。主机与其它器件间的数据传送可以是由主机发送数据到其它器件,这时主机即为发送器。由总线上接收数据的器件则为接收器。

二.数据位的有效性规定

 

I2C总线进行数据传送时,时钟信号为高电平期间,数据线上的数据必须保持稳定,只有在时钟线上的信号为低电平期间,数据线上的高电平或低电平状态才允许变化。

三.字节传送与应答

 

每一个字节必须保证是8位长度。数据传送时,先传送最高位(MSB),每一个被传送的字节后面都必须跟随一位应答位(即一帧共有9位)。

四.驱动程序

#define uchar unsigned char

#define uint unsigned int

#define somenop() _nop_(),_nop_(),_nop_(),_nop_(),_nop_(),_nop_()

sbit SCL=P2^1;

sbit SDA=P2^0;

1

2

3

4

5

1.起始信号和终止信号

 

SCL线为高电平期间,SDA线由高电平向低电平的变化表示起始信号;

SCL线为高电平期间,SDA线由低电平向高电平的变化表示终止信号。

起始和终止信号都是由主机发出的,在起始信号产生后,总线就处于被占用的状态;在终止信号产生后,总线就处于空闲状态

void I2C_Start() //起始

{

SCL=1;

somenop();

SDA=1;

somenop();

SDA=0;

somenop();

SCL=0;

somenop();

}

void I2C_Stop() //终止

{

SDA=0;

somenop();

SCL=1;

somenop();

SDA=1;

somenop();

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

2.发送数据

void I2C_SendByte(uchar dat, uchar ack) //发送一个字节

{

uchar i,j,b=0;

for(i=0;i<8;i++)

{

SCL=0;

somenop();

SDA=(bit)(dat&0x80); //每次取最高位进行发送

dat<<=1; //从最高位开始发送,左移使每一位逐渐成为最高位

SCL=1; //上升沿时发送数据

somenop();

}

SCL=0;

somenop();

SDA=1;

somenop();

SCL=1;

_nop_();

while((SDA==1)&&(j<250)) j++; //等待应答,也就是等待从设备把SDA拉低

SCL=0;

_nop_();

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

3.读取数据

uchar I2C_ReadByte() //读一个字节

{

uchar i,dat=0;

SCL=0; //此处也可以不置低,因为起始和发送一个字节之后SCL都是0

somenop();

SDA=1; //拉高准备数据读取

_nop_();

for(i=0;i<8;i++) //读取8位数据

{

SCL=1;

somenop();

dat<<=1;

if(SDA==1)

dat=dat|0x01;

somenop();

SCL=0; //下降沿时读取数据

somenop();

}

return dat;

}

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

采用51单片机最小开发板,由8位自制独立按键控制。单片机芯片为STC89C52RC,晶振为@12.000 mhz。8X8LED点阵屏模块由MAX7219驱动,MAX7219包含一个自动扫描电路。你只需要把要显示的数据发送...

关键字: 51单片机 MAX7219 寄存器

本文将演示一种加速嵌入式系统设计原型阶段的方法,说明如何将与硬件无关的驱动程序和传感器结合使用,简化整个嵌入式系统的器件选择。同时还将介绍嵌入式系统的器件、典型软件结构以及驱动程序的实现。后续文章“利用与硬件无关的方法简...

关键字: 嵌入式系统 驱动程序 传感器

随着科技的飞速发展,嵌入式系统已经成为现代生活不可或缺的一部分,它们被广泛应用于从智能家居到自动驾驶汽车的各个领域。而在这些系统中,C语言由于其高效性、可移植性和对硬件的直接控制能力,成为了嵌入式系统开发的首选语言。

关键字: C语言 驱动程序

在嵌入式系统开发的广阔领域,51单片机和STM32无疑是两种极具代表性的微控制器。对于初学者而言,选择学习路径时往往会面临一个抉择:是直接跨越51单片机,挑战更高层次的STM32,还是从51开始,逐步进阶?本文旨在探讨直...

关键字: 51单片机 STM32

每个嵌入式软件应用程序都必须在某个时候访问最低级别的固件并控制硬件。驱动程序的设计和实现对于确保系统能够满足其实时要求至关重要。

关键字: 嵌入式 驱动程序

在嵌入式系统开发中,特别是在使用8051系列单片机(简称C51)进行编程时,数据类型的选择与定义对程序的性能和可读性至关重要。C51语言在标准C语言的基础上进行了扩展,以适应单片机特有的硬件结构和操作需求。本文将深入探讨...

关键字: C51数据 51单片机

在嵌入式系统领域,51单片机作为一种经典的微控制器,广泛应用于各种自动化控制系统中。其外部引脚作为单片机与外界交互的接口,承载着数据传输、控制信号输出等重要功能。本文将通过对51单片机外部引脚的案例分析,结合实际代码,深...

关键字: 51单片机 单片机

在电子技术的浩瀚星空中,LED(发光二极管)以其独特的魅力成为了一颗璀璨的明星。而结合51单片机这一经典的嵌入式开发平台,LED的应用更是被赋予了无限可能,其中,花样流水灯便是一个生动而富有创意的实例。本文将带您深入探索...

关键字: 51单片机 LED

在现代嵌入式系统设计中,51单片机作为一种经典的微控制器,凭借其丰富的功能和广泛的应用领域,仍然受到工程师们的青睐。定时器中断是51单片机中一个非常实用的功能,它可以在特定的时间间隔内自动触发中断,执行预设的操作,从而提...

关键字: 51单片机 定时器

在Linux内核开发中,字符设备驱动程序是连接硬件设备与用户空间应用程序的重要桥梁。本文将详细介绍如何编写一个基本的字符设备驱动程序,从理论框架到实际代码实现,再到测试和部署。

关键字: Linux 字符设备 驱动程序
关闭