当前位置:首页 > 显示光电 > 显示光电
[导读]MVA(多畴垂直取向)广视角技术 顾名思义,MVA(Multi-domain Vertical Alignment)模式的液晶显示器,其液晶分子长轴在未加电时不像TN模式那样平行於萤幕,而是垂直於萤幕,并且每个图元都是由多个这种垂直取向的液

MVA(多畴垂直取向)广视角技术
顾名思义,MVA(Multi-domain Vertical Alignment)模式的液晶显示器,其液晶分子长轴在未加电时不像TN模式那样平行於萤幕,而是垂直於萤幕,并且每个图元都是由多个这种垂直取向的液晶分子畴组成。当电压加到液晶上时,液晶分子便倒向不同的方向。这样从不同的角度观察萤幕都可以获得相应方向的补偿,也就改善了可视角度。

在未进行光学补偿的前提下,MVA模式对视角的改善仅限上下左右四个方向,而其他方位角视角仍然不理想。如果采用双轴性光学薄膜补偿,将会得到比较理想的视角。

尽管在某个特殊方位以很大的角度观察萤幕还可能会看到灰阶逆转的现象,但总的来说,MVA广视角模式已经很大程度解决了TN模式的这一痼疾。由於这种模式的液晶显示器在未受电时,萤幕显示是黑色,所以又叫做NB(Normal Black,常黑)模式液晶显示器,这种方式有个最大好处就是当TFT损坏时,该图元则永远呈暗态,也就是我们常说的"暗点"。虽然它也属於"坏点",不过相对TN模式上常见的"亮点"来说,"暗点"要更难发现,也就是说对画面影响更小,用户也较容易接受。

MVA模式由於液晶分子的运动幅度没有TN模式那麽大,相对来说加电後液晶分子要转动到预定的位置会更快一些,而且在*近电极斜面的液晶分子在受电时会迅速转动,带动离电极更远的液晶分子运动。因此改变液晶分子的排列後的MVA广视角技术有利於提高液晶的回应速度。

液晶分子垂直取向意味着Panel两端的液晶分子无需平行于Panel排列,也就是说MVA在制造上不再需要摩擦处理,提高了生产效率。配合光学补偿膜後的MVA模式液晶显示器正面对比度可以做得非常好,即使要达到1000:1也并不难。遗憾的是MVA液晶会随视角的增加而出现颜色变淡的现象,如果以色差变化来定义可视角度的话,MVA模式会比较吃亏,但总的来说它对於传统的TN模式还是改进比较大。

MVA模式并不是完美的广视角技术。它特殊的电极排列让电场强度并不均匀,如果电场强度不够的话,会造成灰阶显示不正确。因此需要把驱动电压增加到13.5V,以便精确控制液晶分子的转动。另外由於它的液晶分子排列完全不同于传统的TN模式,在灌入液晶时如果采用传统工艺,所需要的时间会大大增加,因此现在普遍应用一种叫ODF的高速灌入工艺,因此综合来看,相对传统的TN模式液晶,MVA的成本有所提高。

MVA广视角技术原理分析
TN模式液晶显示器视角狭窄的主要原因是液晶分子在运动时长轴指向变化太大,让观察者看到的分子长轴在萤幕的"投影"长短有明显差距,在某些角度看到的是液晶长轴,某些角度则看到短轴。VA模式则可改善这种液晶工作时长轴变化的幅度,VA即Vertical Alignment(垂直取向)。

如图,它依*叫做Protrusion的屋脊状凸起物来使液晶本身产生一个预倾角(Pre-tilt Angle)。这个凸起物顶角的角度越大,则分子长轴的倾斜度就越小。早期的VA模式液晶凸起物只在一侧,後期的MVA凸起物则在上下两端。

如图是一种双畴VA模式液晶。未加电时,液晶分子长轴垂直於萤幕,只有在*近凸起物电极的液晶分子略有倾斜,光线此时无法穿过上下两片偏光板。当加电後,凸起物附近的液晶分子迅速带动其他液晶转动到垂直於凸起物表面状态,即分子长轴倾斜於萤幕,透射率上升从而实现调制光线。在这种双畴模式中相邻的畴分子状态正好对称,长轴指向不同的方向,VA模式就是利用这种不同的分子长轴指向来实现光学补偿。如图,在B处看到的是中灰阶,在A和C处能同时看到的高灰阶和低灰阶,混色後正好是中灰阶。

当把双畴模式液晶中的直条三角棱状凸起物改成90°来回曲折的三角棱状凸起物後(如图),液晶分子就可巧妙分成四个畴,也即多畴模式。四畴模式液晶在受电後,A、B、C、D各畴的液晶分子分朝四个方向转动,这就对液晶显示器的上下左右视角都同时补偿,因此MVA模式的液晶显示器在这四个方向都有不错的视角。基於这样的补偿原理,可以更改凸起物的形状,用更多不同方向的液晶畴来补偿任意视角可以取得很好效果。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

稳压器只能起到稳定直流电压的作用,它无法改变交流电压的大小和方向,也就无法替代变压器的作用。而变压器虽然自身并没有稳压功能,但是却能够改变电压大小和方向,使得电力设备能够正常传输和分配。

关键字: 稳压器 电压

自举电路(Bootstrap Circuit)是一种在电子电路中广泛应用的升压技术,其核心作用是通过电路自身的工作状态提升某个节点的电压,而无需增加外部电源电压。

关键字: 自举电路 电压

电路保护的意义在于保护电子电路中的元件免受过电压、过电流、浪涌和电磁干扰等有害因素的影响,从而防止设备损坏,确保电子设备的安全和稳定运行‌‌。

关键字: 电路保护 电压

在电子电路中,负电压的产生通常需要一种特殊的电路配置。然而,有一个简单的方法可以获得负电压,那就是利用运算放大器(Op-Amp)和地线。具体来说,你可以将运算放大器配置为一个反相放大器,其输入端接地,并通过适当的电阻和电...

关键字: 电压 运算放大器

一直以来,变压器都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来变压器的相关介绍,详细内容请看下文。

关键字: 变压器 电压 减容

在实际应用中,高压输电通常采用升压变压器将电能升压至数十万伏甚至更高,以减少在输电过程中的电能损耗,并提高输电效率。例如,在我国,送电距离在200-300公里时采用220千伏的电压输电;在100公里左右时采用110千伏;...

关键字: 电压 电网

锂电池多次筛选的关键原因是内阻的重要性‌。锂电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,包括欧姆内阻和极化内阻‌。内阻的大小直接影响电池的性能和寿命。

关键字: 电压 锂电池

今天,小编将在这篇文章中为大家带来摇表的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 摇表 电阻 电压

上海 2025年6月10日 /美通社/ -- MPS芯源系统(NASDAQ代码:MPWR)近期发布了两款新产品:NovoOne开关MPXG2100系列和PFC稳压器MPG44100系列,旨在为快速发展的快速充电市场、工...

关键字: ACDC 高集成 PS 电压

新型SMD保险丝可实现紧凑的全自动装配,并为高压应用提供增强的保护

关键字: SMD保险丝 自动化 电压
关闭