当前位置:首页 > 显示光电 > 显示光电
[导读]本文以ITO膜作为加热元件,设计制备了大尺寸液晶显示器的低温加热模块。采用5个非等分的分区加热结构,通过调控各区域ITO膜加载功率的占空比和引入反馈调节机制,控制加热区域的升温速率,优化液晶显示器的温度场分布。

摘 要:本文以ITO膜作为加热元件,设计制备了大尺寸液晶显示器的低温加热模块。采用5个非等分的分区加热结构,通过调控各区域ITO膜加载功率的占空比和引入反馈调节机制,控制加热区域的升温速率,优化液晶显示器的温度场分布。在270V电压下,先以12%的功率占空比快速升温,再以6%的功率占空比保持温度,能够使液晶显示器在300s内达到快速启动要求,在500s内达到一个相对稳定的温度(-5℃),同时各区域中心温差保持在2℃以内,较好地解决了大尺寸液晶显示器低温加热不均匀的问题。

液晶显示器(Liquid Crystal Display,简称LCD)具有体积小、质量轻、功耗低、电磁兼容性好等突出优点,已经成为主流的显示器件。由于液晶分子在低温环境下粘度系数加大,会导致响应时间变长,图像产生严重拖尾,不能正常显示,导致LCD普遍存在低温环境下工作性能差,甚至不工作的现象。

针对LCD在低温环境下不能正常工作的情况,采用较多的方式是将镀有ITO(Indium Tin Oxides)膜的玻璃作为加热元件对LCD进行低温加热补偿。当电流流过ITO膜时,ITO膜本身电阻产生的热量传递给与之相贴合的LCD,使其达到正常工作所需的温度要求。目前常用的区域ITO加热方式其温度场均匀性会随着LCD尺寸的增大而下降,局部区域会产生过热或欠热现象,严重时甚至引起LCD及ITO加热元件的炸裂。

针对上述问题,本文拟采用多区域ITO膜的加热结构,调控占空比和引入反馈调节机制,控制加热元件的升温速率,优化温度场分布,使大尺寸LCD显示器能够在低温环境下快速启动并稳定工作。

1 理论优化设计

1.1 加热元件的设计

本文以624mm×240mm尺寸的LCD显示器为研究对象,采用方块电阻为50Ω/□的ITO玻璃对其进行加热。将ITO加热片按长度3∶2∶2∶2∶3的比例分成五个区域。由公式(1)可得到各区域电阻值。

其中,ρ□(Ω/□)为ITO玻璃的方块电阻,l1为ITO加热片分区后各区域的长度,l2为宽度。

1.2 软件仿真

ANSYS软件分析加载电压为135V,功率占空比为30%时各加热区域温度场分布及中心点的温度上升曲线,如图1所示。

图1 电压135V,功率占空比30% 下模拟各加热区域温度场及温度上升曲线图

由图1可以看出,非等分各区域间的温度差在4℃以内,该数据较以往单区域加热的温度场分布更均匀。

2 加热片的制备

采用湿法刻蚀,将ITO基片按比例图案化,得到5个非均匀的加热区域。再将纳米银浆均匀地涂覆在5个分区的边缘部分,用航空导线将电极引出,如图2所示。测试各分区的电阻值,见表1。

图2 分区域ITO 加热片的结构示意图

表1 加热片各区域电阻值

3 测试与分析

3.1 加热片测试分析

如图3所示为加载电压为135V,功率占空比为30%加热片各区域的升温曲线。从图3中可以看出,当加载电压为135V,占空比为30%时,五个区域温差不大,中间区域温度稍高,最大温差在4℃~5℃左右。由于加热片产生的热量和散失的热量相当,随着温度升高,各区域最后都能保持在一个相对稳定的温度,这和软件仿真的结果基本上是吻合的。

3.2 模块测试分析

将多区域加热片和LCD显示器装入图4所示的模块壳体中,其中加热元件和LCD之间为空气层,热量以热对流和热辐射的形式传递。为进一步减小各区域间的温差,我们引入反馈机制,在各加热区域中心安装温度传感器。首先将各区域的温度值取平均,再将各区域温度与平均值作比较。当温差超过“2℃”的设定阈值时,降低或升高相应加热区域的功率占空比,使各区域间的温度分布尽量保持一致。

图4 特种液晶显示器模块示意图

图5所示为加装多区域加热片的特种LCD显示器模块在加载电压为270V,功率占空比分别为8%、10%、12%和14%时,模块各显示区域间的升温曲线。

图5 电压为270V,占空比8%、10%、12%、14% 特种LCD 模块显示各区域升温曲线

由图5可以看出,功率占空比越高,升温越快。功率占空比为12%、14%时,L C D 显示器表面温度能够在3 0 0 s 内由-45℃升到-20℃~-10℃左右。但随着功率占空比增加,14%功率占空比下各显示区域间温差增大,因此选用12%作为加热前段快速升温时的功率占空比。

当温度达到一定值以后,加热后段再采用低功率占空比保持温度。图6所示为加热前段12%加热300s后,再改用以2%、4%、6%和8%作为加热后段功率占空比特种LCD模块的温度曲线图。

图6 后段占空比为2%、4%、6%、8%特种LCD 模块温度曲线图

由图6可知,当加热后段功率占空比为2%时,LCD模块温度场不能保持在一个稳定值;在4%、6%和8%的功率占空比下LCD温度场分别保持在-12℃、-5℃和1℃左右。其中在4%和8%的功率占空比下,LCD的温度场分别有少许的下降和上升趋势;而在6%的功率占空比下,LCD模块各显示区域能保持一个相对稳定的温度值(-5℃),且各区域中心部分的温差保持在2℃以内,更适合实际应用。

结论

本文针对传统单区域ITO加热片在大尺寸LCD模块加热中存在的温度场分布不均匀等问题,设计并制备了具有5个非等分区域的大尺寸LCD加热片。通过对各加热区域的功率占空比进行分段控制调节,使大尺寸特种LCD模块能够快速升温,且各区域升温曲线相对一致,并通过温度传感器在各区域之间建立温差反馈自动调节电路,使各区域间的温度差控制在2℃以内,有效保证了大尺寸LCD模块的加热均匀性。当加载电压270V,加热前段占空比12%,后段占空比6%时,大尺寸LCD模块在300s内达到正常工作温度,并且在500s时温度维持在一个相对稳定的值(-5℃),同时将各区域的温度差控制在2℃以内。该多区域ITO加热片有效解决了传统单区域加热片对大尺寸LCD模块加热不均匀、爆屏等问题,升温速度更快,温度场分布更均匀,可靠性更高,具有重要的实际应用意义。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

随着可再生能源的快速发展,光伏技术作为其中的重要一环,日益受到人们的关注。光伏板作为光伏系统的核心部件,其稳定性和可靠性直接关系到整个系统的运行效率和使用寿命。而在光伏板中,接线二极管作为防止电流反灌、消除电弧、防止过电...

关键字: 光伏板接线 二极管

二极管,这个在电子领域中看似微不足道的小元件,实则拥有巨大的作用。无论是在电路控制、能量转换,还是在信号处理和保护电路中,二极管都发挥着至关重要的作用。本文将深入探讨二极管在科技领域中的多种作用,并解析其背后的工作原理和...

关键字: 二极管 电路控制

LED显示屏将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对它的相关情况以及信息有所认识和了解,详细内容如下。

关键字: LED 显示屏

今天,小编将在这篇文章中为大家带来led显示屏的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: LED 显示屏 LED显示屏

在这篇文章中,小编将对显卡的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: 显卡 集成显卡 独立显卡

LCD(液晶显示器)和LED(发光二极管)这两个术语通常用于描述显示技术中的不同方面。实际上,大多数液晶显示器都使用LED作为背光光源。因此,这两个术语经常一起使用,而不是相互替代。

关键字: lcd显示器 拖尾 LCD

荧光灯,也被称为日光灯,是一种高效节能的电光源,其发明和普及对现代照明技术产生了深远的影响。荧光灯的工作原理结合了气体放电、紫外辐射和荧光材料的特性,实现了将电能转化为明亮、均匀且柔和的可见光。以下是荧光灯工作流程的详细...

关键字: 荧光灯 日光灯

液晶显示器作为现代计算机系统和各种电子设备中的核心输出部件,其稳定性和可靠性直接影响着用户的使用体验。然而,在长期使用过程中,液晶显示器难免会遇到一些故障问题。本文旨在提供一份详细的液晶显示器维修教程,涵盖故障识别、基本...

关键字: 液晶显示器 液晶显示器维修

LED(Light Emitting Diode)与LCD(Liquid Crystal Display)是当今显示技术领域的两大重要分支,各自凭借独特的优势在消费电子、广告传媒、工业控制、家用电器等多个领域占据着主导地...

关键字: LED LCD

今天,小编将在这篇文章中为大家带来显卡的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: gtx1060 显卡
关闭
关闭