当前位置:首页 > 测试测量 > 测试测量
[导读]Author(s): 李 庄 - 天津大学精密测试技术及仪器国家重点实验室 周 琰 - 天津大学精密测试技术及仪器国家重点实验室 王 立坤 - 天津大学精密测试技术及仪器国家重点实验室 Industry: Oil and Gas Products: Sof

Author(s):
李 庄 - 天津大学精密测试技术及仪器国家重点实验室
周 琰 - 天津大学精密测试技术及仪器国家重点实验室
王 立坤 - 天津大学精密测试技术及仪器国家重点实验室

Industry:
Oil and Gas

Products:
Software, Data Acquisition

The Challenge:
近年来我国原油泄漏事故频仍,造成巨大经济损失和环境污染,所以需要一个能够及时发现并精确定位的监测系统。

The Solution:
针对原油在长距离传输过程中泄漏,导致损失的问题,天津大学基于NI LabVIEW 开发了一套实时性较好的监测系统。利用NI 硬件及LabVIEW 强大的信号处理函数,能够及时而准确地定位泄漏点。目前这套系统已经成功地应用在胜利油田和华东输油管理局等管线,并取得了可观的经济效益。

系统的总体构成示意图

原油泄漏,不仅造成了巨大的经济损失,还严重地污染了河流、泥土等自然资源。然而,在绵延几千公里的石油管道中,检测出原油泄漏的位置并非易事。我们迫切需要的是提高对石油管道的监测能力,并且及时而准确地定位泄漏发生的位置,以便最大限度地减少损失和污染程度。

当前,对于管道检测国际上已有各种成熟的技术,如压力梯度法、超声波检测法等。然而国外的现成技术不能完全适应中国原油输送的特点,而且价格昂贵。国内,天津大学等多家研究机构也在不断研发适合中国的管道监测系统。

基于LabVIEW 实现实时监测系统

在中国,原油泄漏的主要原因之一是人为,通常由偷油车造成。其特点是持续时间短、泄漏量较大,属于突发事故,对此,天津大学采用了负压力、流量联合等判断方法。他们使用LabVIEW 以及NI 采集卡平台不间断地采集压力、流量等参数,监视管道运行状况。但由于工业现场存在不可避免的电磁干扰、输油泵的振动等,因此采集到的信号序列附加了大量噪声,如何从噪声当中准确地提取出信号的特征点是定位的关键。

“首先,因为不同条件下的信号具有不同的特征,我们利用LabVIEW中丰富的信号处理函数对信号的特征作了深入的分析和预处理,使得系统能够针对不同的信号做出相应的处理。然后,我们采用Signal Processing 软件包里提供的小波分析的动态库来捕捉压力波变化的特征点,从而确定泄漏位置。由于管道全线长180 公里,我们采用电话网络实现数据通信,各个子站的数据都可以实时传到中心站,线路中断能够自动重新连接。主程序每一分钟调用一次泄漏判断子程序,该子程序综合运用负压波法、压力梯度法和流量差法分析采集到的工况数据,判断是否有泄漏发生。”

简单易用、功能强大的LabVIEW 平台

“作为虚拟仪器开发平台,LabVIEW 在采集、分析、显示等方面显示出了强大的优势。我们综合运用了数字滤波、中值滤波、频谱分析等信号处理函数,使用起来只需连连线;小波分析软件包也为现场应用提供了很大的方便。我们仅用了两个多月就在实验室完成了全部程序的编写,并很快实现了现场调试。”目前这套系统已经成功地安装在临盘- 济南和沧州-临邑的两条管线上,并取得了不错的成绩。据统计,在胜利油田临盘- 济南管线,2001 年3、4月份,共监测到泄漏39 次,抓获盗油车辆8 辆;在沧州- 临邑管线,2001 年4、5 月份,共抓获盗油车辆17辆,发现泄漏40多处,为国家挽回经济损失数十万元。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

启智扬帆谱新章,携手共进续辉煌  北京2024年5月6日 /美通社/ -- 春风轻拂,万物复苏,4月25日,北京邮电大学-法国里昂商学院EMBA (中外合作办学) 项目2024级春季班开学典礼在北京邮电大学经...

关键字: 北京邮电大学 人工智能 数字化 NI

海口2024年4月16日 /美通社/ -- 4月14日,在中法建交60周年之际,科学护肤先锋品牌Galenic法国科兰黎受邀入驻第四届中国国际消费品博览会(以下简称"消博会")法国馆。Galenic法...

关键字: NI IC BSP ACTIVE

伦敦2024年4月16日 /美通社/ -- ATFX宣布任命Siju Daniel为首席商务官。Siju在金融服务行业拥有丰富的经验和专业知识,曾在全球各地的高管职位上工作了19年以上。Siju之前担任FXCM首席商务官...

关键字: NI AN SI BSP

德国殷格翰2024年4月16日 /美通社/ -- 今天,研发驱动的全球领先生物制药企业勃林格殷格翰发布了2023年全年业绩表现。公司加速夯实研发管线,重点研发领域的多项关键性临床试验顺利按计划推进。全年研发投入同比增长1...

关键字: 管线 可持续发展 GE TI

在电子设计和信号处理领域中,信号毛刺是一个常见而又不容忽视的现象。毛刺是指在原本预期的连续或稳定的信号中出现的短暂而异常的电压或电流波动,表现为瞬态尖峰或窄脉冲。它们通常是由于电路设计、制造缺陷、噪声耦合、信号切换速度过...

关键字: 信号毛刺 信号处理

在科技领域中,信号处理、滤波以及控制系统设计都是至关重要的环节。在这些环节中,二阶广义积分器以其独特的性质和广泛的应用领域,受到了广大科研工作者和工程师的青睐。本文将深入探讨二阶广义积分器的原理,分析其工作原理、应用以及...

关键字: 二阶广义积分器 信号处理

语音芯片里语音识别系统被应用在更多需要代替人工服务或者识别指令的机器人中,实现更多的人机交互,在生活中带来更多的便利。语音识别系统的分类和结构跟otp语音芯片系统比起来也有所不同。

关键字: 语音识别 信号处理 语音

信号处理:这是语音识别的基础,涉及将原始语音信号转换成可用于分析和识别的形式。模式识别:通过建立语音模式库,将输入的语音与已知的模式进行匹配,以实现语音识别。

关键字: 语音识别 信号处理 语音

需要将人类语音通过麦克风等设备转换成数字信号。这一步通常涉及信号处理技术,如滤波和分帧,以去除背景噪声和提高信号质量。

关键字: 语音识别 数字信号 信号处理

虽然频谱直接减法在某些情况下可以作为一种简单的噪声抑制方法,但由于其固有的问题,如噪声估计的不准确、频谱失真和计算复杂度等,其应用受到一定的限制。因此,在实际应用中,需要综合考虑各种因素,选择更合适的噪声抑制方法。

关键字: 频谱失真 噪声抑制 信号处理
关闭
关闭