当前位置:首页 > 测试测量 > 测试测量
[导读]流量测量技术它与传统意义上度量衡计量器具的应用有很大差别,它不是简单地将流量计安装好,开表投运就一定能达到测量目的。曾经有两位专家对现场装用着地千余台流量仪表进行调查,发现约有60%所选择地测量方法不是

流量测量技术它与传统意义上度量衡计量器具的应用有很大差别,它不是简单地将流量计安装好,开表投运就一定能达到测量目的。曾经有两位专家对现场装用着地千余台流量仪表进行调查,发现约有60%所选择地测量方法不是最合适或不正确,其余地40%中,约有一半虽然测量方法合适,却存在现场布置和安装地不合理现象,这些不合适、不正确和不合理,带来了相应地测量误差。因此流量测量是一种强烈依赖于使用条件地测量,在实验室,流量计可以得到极高地精确度,但是在使用现场,一旦流体条件或环境条件有大的变化,不仅精确度无法保证,甚至无法进行正常测量。

一台流量计出厂校验其误差优于±0.5%,但是新的仪表安装到现场开表后误差可能增至±5%~±10%并不罕见。造成这种情况的原因多种多样,如选型不合理,量程不合适,上下游直管段长度不足,安装不正确,流体物性偏离设计状态太大,工况条件超过允许值,脉动流影响,振动等环境条件太严酷等,还可以举出很多。因此流量测量是一个系统问题,包括检测装置、显示装置、前后直管段、辅助设备。而应用技术的研究,还包括测量对象本身,仅仅流量计本体性能好并不能保证获得要求的测量效果。

流量测量仪表应用技术研究的目标是正确的使用,主要有下面几个具体内容。

1、提高开表率

在仪表设备管理中,开表率的定义是:(仪表总台数一未正常使用的仪表台数)/仪表总台数。因此,提高开表率就是要减少无法投入正常使用的仪表。在设计院中,自控专业所设计的测量系统,开表率是反映设计人员工作质量和技术熟练程度的重要指标之一,经验丰富和认真负责的设计人员,能使开表率达到95%以上,远传压力表或通过整改达到95%以上。但是在市场经济的条件下,工程公司往往对业主实行交钥匙承包做法,要求做到的开表率就不是95%,而是100%,所设计的仪表系统如果不能正常投入使用,要为工程公司责任,那就是进行整改或更换仪表,这就意味着经济损失。因此,仪表应用技术的研究具有现实的经济意义。

开表率是仪表应用技术水平和仪表本身品质的综合表现。测量方法和仪表对测量对象、使用环境的匹配、协调、优化、以及在此之前的设计选型和安装调试等环节都是影响开表率的重要因素。

这些年来,我国的流量测量仪表应用技术获得了长足的进步,流量测量仪表的开表率有了很大提高,这一方面是由于仪表人员整体技术水平有了明显提高,责任意识有所增强,更重要的是仪表的品质比以前计划经济年代有了大幅度提高,进口仪表和引进国外先进技术组装的仪表比重在上升,尤其是仪表普通实现智能化后,测量范围可调比大大扩展,以前由于测量范围选择不合适而无法投入正常使用的仪表,通过变更量程一般都能投入使用。

2、保证测量精确度

流量测量精确度指的是流量测量系统所获得的精确度,它同流量计本身的精确度是有区别。仅仅流量计本身性能好,精确度高,并不一定能获得较高的测量精确度。

要保证流量测量系统的精确度,除了合理的选型,正确安装与调试,及时的维护和保养之外,应用智能化技术对测量部分可能引入的误差进行恰到好处的补偿和校正也是一项有效的方法。例如对液体的温度膨胀系数进行补偿,不锈钢压力表对气体的温度、压力和压缩系数进行补偿,对差压式流量计的雷诺数影响和流束膨胀系数进行补偿,对各种流量计流量系数的非线性进行补偿,对容积式流量计、涡街流量计的温度影响进行补偿,对超声流量计的速度分布进行补偿等。这种补偿和校正是用系统的方法将检测部分所固有的、依靠其本身无法得到克服的误差进行处理,使之消除或得到基本消除。实践表明,这一方法简单有效,很有发展前途。

在保证测量精确度诸多的方法中,在线实流校准占有重要地位。以前大多采用离线方法校准流量计,使用该方法检定的流量计经误差修正后虽然精确度较高,但因其检定时管路的参比条件与实际使用时不同,检定时流体性质与实际使用的流体有差异,检定时的环境条件与仪表使用场所的实际环境不相同,从而造成附加的使用误差,降低了测量精确度。在线实流校准法是解决这一问题的有效方法。例如,油品计量站在建设阶段就预留标准体积管连接口,接入标准体积管后,通过阀门切换可以实现对计量站中各台流量计实现在线实流校准。现在,在天然气的分配站也要求采用在线实流校准的方法。

3、提高流量测量系统的可靠性

用于安全联锁报警的流量仪表如果不可靠,应该联锁动作时不动作,容易酿成事故,不该动作时乱动作,容易导致不应有的停车,造成损失。工业炉窑中的燃料流量计如果不可靠,造成流路堵塞,容易导致炉子熄火,酿成事故。用于过程控制的流量仪表如果不可靠,容易为调节系统发出错误信息,导致调节系统失调,破坏生产过程的稳定,影响产品的质量、产量和物耗,造成损失。用于财务结算计量的流量计如果不可靠,容易引起计量失准,引发计量纠纷和为企业带来损失。可以看出,流量仪表的可靠性是极为重要的。

提高流量测量可靠性的途径主要是提高仪表本身的可靠性,选用可靠性高的仪表进行可靠性设计。近年来,流量测量仪表的可靠性获得了显著的提高,主要表现在一下几方面。

(1)仪表本身的可靠性有了显著提高。

(2)通过改进仪表的结构设计,使系统可靠性获得提高。例如采用不断流插入式结构,可在不影响工艺操作的情况下更换流量计。

超声流量传感器的夹装式结构,电磁流量传感器电极的带压更换结构,涡街流量传感器采用管外安装超声探头的结构等,都能在仪表损坏后的修理过程大大缩短修复时间。

(3)引入冗余技术。如采用双传感器,并对传感器的正常与否进行自动判断,将发生故障的那路信号予以剔除。

(4)引入自诊断技术,并通过现场总线将诊断结果送到操作站或专用的设备管理系统(AMS)予以显示报警,以及时发现故障,及早采取措施。

4、节省费用

这里所说的费用除了仪表购置费之外,还应计入附件购置费、安装调试费、运行费、备品备件费、维护和定期校准(检定)费,而仪表的平均寿命摊入的折旧费也不是可忽视的。

有些类型的流量计虽然购置费较低,但必须增设上下游切断阀和旁通阀等辅助设备,有时辅助设备的费用大大超过流量计本身的购置费。

在仪表选型中应避免片面追求高性能,高精确度,因为这样做不仅增加了购置费,而且往往备品备件费也相应增加。最优的设计选型是在满足使用要求的前提下,仪表的可靠性最高,维修方便,费用最省的那个方案。

5、安全性

耐震压力表有些被测流体属易燃易爆介质,有些仪表安装场所属易燃易爆场所,仪表的选型、系统设计和安装都应符合防爆规程。

除了上述目标之外,还应满足使用的其他要求,如压损要求、卫生要求、防护要求等,还应注意维修方便,有的还应考虑便于实施强制检定。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在科技日新月异的今天,传感器技术作为现代工业、汽车、航空航天等领域的关键组成部分,发挥着越来越重要的作用。其中,电子叻力角度传感器以其独特的结构和性能,成为众多应用场景下的理想选择。本文将深入剖析电子叻力角度传感器的结构...

关键字: 电子叻力角度传感器 传感器

随着科技的不断进步,数字信号处理技术在各个领域的应用越来越广泛。其中,DAC(Distance Amplitude Curve,距离-幅度曲线)曲线作为超声波检测中一种重要的分析工具,在无损检测领域发挥着重要作用。本文将...

关键字: 数字信号 DAC曲线

随着农业科技的不断进步,氮磷钾传感器作为一种现代化的农业生产工具,正逐渐走进广大农户的视野。它能够实时测量土壤中的氮、磷、钾元素含量,为农民施肥提供科学依据,从而避免不必要的浪费,减少环境污染,提高施肥的精准度。然而,关...

关键字: 氮磷钾传感器 传感器

在科技日新月异的今天,软板作为一种具有柔性、可折叠、可弯曲等特点的电路板,在电子产品、医疗仪器、汽车电子、航天航空等领域的应用日益广泛。然而,对于软板的品质与性能的把控,一直是业界关注的重要课题。软板裸测,作为软板质量检...

关键字: 软板裸测 软板 电路板

随着科技的进步,各种测量技术在不同领域得到了广泛的应用。其中,直接测量法和扫根仪作为两种典型的测量方式,在各自的适用范围内发挥着重要作用。然而,对于这两种测量方式之间的差距,人们往往存在疑问。本文将从原理、应用、优缺点等...

关键字: 扫根仪 直接测量法

二极管是用半导体材料(硅、硒、锗等)制成的一种电子器件 [1]。二极管有两个电极,正极,又叫阳极;负极,又叫阴极,给二极管两极间加上正向电压时,二极管导通, 加上反向电压时,二极管截止。

关键字: 二极管 电极 半导体材料

在电子领域,脉冲直流代表脉冲直流电(PDC)。这种形式的电流同时具有交流电(AC)和直流电(DC)的属性。脉冲直流电源提供具有可变电压的单极性电流。这种整流波形是使用半波或全波整流器产生的。

关键字: 直流脉冲 电话机 直流电

增强负载能力:在变压器容量不变的情况下,较小的阻抗能够使得变压器能够承受更大的负载,提高其负载能力。

关键字: 功放变压器 内阻 变压器

你了解DS1820工作原理嘛,今天就让我来带你深入探索数字温度传感器的科技奥秘。在科技飞速发展的今天,传感器作为获取物理世界信息的重要工具,已经广泛应用于各个领域。其中,DS1820作为一款数字温度传感器,以其独特的优势...

关键字: ds1820 数字温度传感器

在科技日新月异的今天,水质传感器作为一种重要的环境监测工具,已经广泛应用于环境保护、水资源管理、饮用水处理等多个领域。本文旨在深入解析水质传感器的类型、工作原理、应用及发展趋势,为读者揭示这一科技领域的魅力与前景。

关键字: 水质传感器 生物传感器
关闭
关闭