当前位置:首页 > 智能硬件 > 智能硬件
[导读]本文介绍了SDRAM 控制器IP 核的设计、电路的功能仿真、综合以及验证等过程,其中重点讨论了该控制器的接口设计以实现SoC的集成。

摘要:本文介绍了SDRAM 控制器IP 核的设计、电路的功能仿真、综合以及验证等过程,其中重点讨论了该控制器的接口设计以实现SoC的集成。性能分析表明该控制器设计合理、性能优异。结果证明了该IP 在功能和时序上符合SDRAM控制器技术规范,达到了预定目标。
关键词:龙芯,同步动态存储器,片上系统,总线接口

随着设计与制造技术的发展,集成电路设计从晶体管的集成发展到逻辑门的集成, 现在又发展到IP的集成,即SoC设计技术。SoC可以有效地降低电子信息系统产品的开发成本,缩短开发周期,提高产品的竞争力,是工业界将采用的最主要的产品开发方式。目前国内也加大了在SoC 设计以及IP 集成领域的研究。本文介绍的便是国家基金项目支持的龙芯SoC—ICT- E32 设计所集成的片上SDRAM 控制器模块设计与实现。

1  ICT-E32 体系结构

ICT-E32 是一款32位高性能SoC ,它集成龙芯1号CPU和自行开发的片上总线架构,旨在推进龙芯的产业化,探索SoC 设计方法。它可用于PDA、智能家电和消费类电子产品等方面,其集成平台也可用于后续芯片开发,开发衍生产品。ICT-E32 采用的龙芯1 号CPU 核是一款32 位的MIPSCPU 。片上总线按照挂载IP 的带宽分成两级,分别是高速总线和低速总线。高速总线采用地址流水和读/ 写并发技术,数据线宽度为64bit , 最高频率133MHz , 挂有CPU 核、SDRAM Cont roller 和PCI Controller 等模块;低速总线采用Wishbone体系结构,数据线宽度32bit ,最高频率66MHz ,挂有UART、USB Host 和LIO接口等模块。

两级总线通过桥接器连接。还有一条穿过片上所有IP 模块的总线—DCR(Device Cont rol Register Bus) 总线。这是一个环形的总线,CPU是DCR总线上惟一的主设备,负责对总线上其他的设备进行读写操作。DCR总线用于对各个IP 模块的寄存器堆(Register bank) 进行读写。其大致结构图如图1所示。

图1  ICT-E32 结构图

2  SDRAM控制器设计与实现

SDRAM 控制器挂载在IC -E32 的内部高速总线上,是总线上的Slave设备。它支持的SDRAM 大小范围为64M~1G。通过I2C 串行总线协议访问DIMM 条的SPD (SerialPresence Detect) ,来配置SDRAM 控制器的模式寄存器。它的工作频率与高速总线同步,兼容PC100/133 。数据线宽度为64 位,支持burst 操作(1 ,2 ,4 ,8 与整页) ,支持顺序与交替访问。SDRAM 控制器主要由三大模块组成,包括高速总线接口、DCR总线接口以及SDRAM控制模块。

2. 1  高速总线接口
ICT-E32 的内部高速总线类似于IBM 的PLB总线协议,它的地址线为32位和数据线为64位。这是一款高性能的片上同步总线,总线上的设备使用同一个时钟源提供的时钟。采用二级地址流水和读写并发技术。由总线仲裁器控制总线上Master设备和Slave设备之间的读/ 写操作。总线上的Master设备使用独占的地址线、读数据线、写数据线以及传输控制信号,而Slave设备则共享分隔的地址和读/ 写数据线,其中读/ 写数据线配有各自的传输控制信号。它支持SDRAM仲裁,仲裁的原则是采用带抢占的剥夺方式,CPU访问的优先级最高。

内部高速总线仲裁使用静态优先级,当Master设备对某一Slave设备发出请求时,由总线仲裁器作出仲裁,如果该Master设备的优先级最高,则向该Master设备作出应答,同时向Slave设备发出命令,使其独占Slave总线。

SDRAM控制器作为内部高速总线上的Slave设备,只对总线发出的命令做出响应。高速总线接口负责将总线给出的命令转换为对SDRAM控制器的操作。当总线发出命令时,高速总线接口首先判断SDRAM 的状态,如果内存处于空闲状态则给SDRAM 控制器发出读/ 写指令,在SDRAM 控制器完成对内存操作后,给总线返回应答信号及读数据,其中读/写数据分别经过同步FIFO 与总线连接。图2 (a) 给出了高速总线接口具体的操作流程图。

2. 2  DCR总线接口
ICT-E32 的DCR 总线参考的是IBM 的DCR总线。这是一款32位的同步总线,用来在Master设备CPU 的通用寄存器与Slave设备的模式寄存器之间传输数据,是一条贯穿片上所有IP模块的环形总线。

当CPU 配置某一Slave设备的模式寄存器时,通过DCR总线给出配置数据,同时给出该设备的地址。Slave设备在接受到DCR 总线上的数据时,首先判断地址是否对应,如果给出的地址为自己的地址则接受数据;如果不是,则将数据旁路(bypass) 给下一个设备。

DCR 接口的功能是接收CPU写入的各寄存器的值,及向CPU 提供状态寄存器及其他寄存器的内容。通过地址比较逻辑来判断地址是否命中,如果地址命中则接受数据,同时给出应答信号;反之,则将数据旁路给DCR 总线上的下一个设备。图2(b) 给出了DCR 总线接口操作流程图。

图2  总线接口操作流程图

2. 3  SDRAM控制模块
SDRAM 控制模块在接受到系统命令后, 负责对SDRAM 内存条发出读/ 写操作控制信号。它内部主要包含一个控制状态转换的Mealy 状态机,如图3 所示。包括空闲( Idle) 、刷新(Ref resh) 、模式寄存器配置(Mode Register Set) 、有效(Active) 、预充( Precharge) 、读和写七个状态。每个状态对SDRAM 内存发出不同的操作指令。

SDRAM 内存的操作主要通过以下控制信号给出,RAS# 行地址选择、CAS # 列地址选择、WE # 写使能信号、CS #片选信号以及CKE 时钟使能信号。表1 给出了各种指令的组合方式。

图3  SDRAM 控制器状态机



 
2. 4  性能分析
该SDRAM控制器模块使用Micron公司提供的MT48LC2M32B2仿真模块进行功能仿真,仿真结果显示设计符合规范。SDRAM 控制器是内部高速总线上各Master设备访问率较高的Slave 设备,它的性能好坏直接影响整个SoC 的运作。该控制器的读/ 写操作周期数Lrw为8 ,由此可以得到该控制器的读写周期为公式(1) ,其中fclk为主频时钟: 



 SDRAM 控制器中刷新周期数Lref 为4 ,刷新间隔计数tREF 可通过模式寄存器配置,表2 给出了tREF可设的4种值,及主频时钟为100MHz的情况下的间隔周期。这样便可以得出控制器的刷新周期为 : 


当tREF 取最大值时,可以得到每秒钟最大的用户可用时间为 

 
当SDRAM 控制器进行4 字读写操作时,由于该控制器数据线为64bit ,所以可得该控制器的最大数据传输率DTR(data transfer rate) 为式(4) : 


其中,当主频时钟f clk足够大时,式(4) 便可约减为式(5) :


因此可以得到,当主频时钟为100MHz 时,SDRAM 控制器的数据传输率约为400MB/s ; 而当主频时钟取133MHz时,数据传输率可达到522MB/s。

2. 5  设计比较
参考文献[1 ]中,提供了一个基于FPGA芯片实现试验性质的SDRAM控制器。与该控制器相比,本文的设计不仅在性能上有较大改进,而且由于本文的设计是面向应用的,已构成独立的IP 核,而该设计是试验型的,不能直接应用于产品,没有构成IP 核的要求。表3 给出了两个设计的性能比较。


2. 6  FPGA验证与ASIC实现
本设计使用龙芯SoC 的FPGA 验证平台进行硬件仿真,硬件仿真平台使用的FPGA芯片是Xilinx 公司的XC2V6000 ,硬件仿真平台实际使用的是128MB PC100现代内存条。SDRAM控制器在FPGA 实现后接近5万的逻辑门。整个SoC 设计FPGA实现的工作主频为24MHz ,FPGA验证平台上SDRAM的时钟也为24MHz。

验证表明:SDRAM 控制器在系统中工作正常。由于HDL 代码采用参数化的设计,ASIC实现的版本只要做很少的修改。与FPGA不同的是,ASIC版本实现了门控时钟和功耗管理,设计中的同步FIFO采用Artisan的双端口RAM 库生成。DC综合采用的是SMIC的0.18μm工艺库,延迟反标(back annotation) 的门级仿真的结果表明设计符合预期要求。

3  结束语

本设计挂载在内部高速总线上,在具体的结构设计方面,将系统的性能分析和软硬件协同仿真相结合,优化各模块的设计。并且实现了IP的可重用设计,即不需要对结构做大的改动,就可以重构一个适合不同需求的片上SDRAM 控制器,只需要通过替换接口模块挂接在其他类型的片上总线。同时,参数化的设计可以方便的选择实现工艺。设计验证中IP 的功能达到预期的要求。 
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

2024年教育数字化巨浪来袭,如何引领潮流、筑起行业壁垒? 成都2024年4月17日 /美通社/ -- 在信息技术飞速发展的今天,数字化已成为推动各行各业革新的强大引擎。特别是在教育领域,一场前所未有的变革正在悄然兴起...

关键字: AMD 数字化 智慧教育 集成

北京2023年9月21日 /美通社/ -- 近日,由开放数据中心委员会(ODCC)主办的2023“开放数据中心大会”在北京国际会议中心举行。今年是ODCC成立10周年,大会汇集了数据中心产业链上下游企业、科研机构、专家学...

关键字: 数据中心 TI PEN DC

舍弗勒展示直驱转台、集成角度测量系统轴承和精密减速机单元等创新解决方案 满足各类应用需求的主轴轴承  采用刚性高、无齿隙的精密减速机和驱动单元的新型自动化解决方案 德国施韦因富特2023年9...

关键字: 机床 减速机 主轴 集成

(全球TMT2023年9月8日讯)第24届中国国际光电博览会将于2023年9月6日-8日在深圳举行。三安集成出席,与行业同仁分享最新动态。在同期举办的2023 CIOE&YOLE国际论坛上,三安受邀在光收发器&...

关键字: 光电 集成 VCSEL PD

深圳2023年9月8日 /美通社/ -- 第24届中国国际光电博览会将于2023年9月6日-8日在深圳盛大举行,超过3000家国内外光电企业汇聚于此,面向光电行业及应用领域展示前沿的创新技术及综合解决方案。三安集成的光技...

关键字: 集成 光芯片 CIO VCSEL

电气化和智能化的发展趋势为舍弗勒带来新的增长机会 舍弗勒计划到2026年前,在全球范围内投入5亿欧元用于电机产能扩充和新产能建设 舍弗勒计划与VDL Groep合作开发自动驾驶穿梭巴士,首款展示车亮相展会...

关键字: 热管理 自动驾驶 MIDDOT 集成

(全球TMT2023年9月1日讯)8月30日,中国移动第四届科技周暨战略性新兴产业共创发展大会在北京举行。会上,中国移动携手爱立信等产业链十余家合作伙伴发布5G轻量化技术RedCap“1+5+5”创新示范之城。RedC...

关键字: 中国移动 爱立信 DC 终端

(全球TMT2023年9月1日讯)8月31日,由软通动力主办,以“智联未来 科创领航”为主题的工业互联网创新发展论坛暨ConnectCity智改数转城市行首站在山城重庆举办。软通动力董事兼首席运营官车俊河表示,软通动力...

关键字: 工业互联网 数字化 集成 NEC

Nuvei 提供包括集成更多支付方式在内的全套解决方案,为这家中国运营商的全球扩张提供了特别支持 上海2023年9月5日 /美通社/ -- 加拿大金融科技公司Nuvei Corporation(下称"Nuve...

关键字: IP BSP 纳斯达克 集成

(全球TMT2023年9月1日讯)Experlogix宣布其数字商务(Digital Commerce)业务已成功扩展到北美市场。该平台于2023年6月底在北美推出,包括一套全面的B2B商务解决方案,旨在为企业组织提供...

关键字: LOGIX 集成 COM DIGITAL
关闭
关闭