当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 一个用于数据中心管理和运营的人工智能(AI)策略,你需要的不仅仅是数据和一些非常聪明的人。如果还要满足业务的需求,选择特定的案例并理解那些会影响AI结果的数据类型—然后验证这些结果—将是人工智能

一个用于数据中心管理和运营的人工智能(AI)策略,你需要的不仅仅是数据和一些非常聪明的人。如果还要满足业务的需求,选择特定的案例并理解那些会影响AI结果的数据类型—然后验证这些结果—将是人工智能能否满足您的业务需求的关键。

通过关注特定的案例,可以扩展早期的成功,并逐步获取进一步的价值。管理人员不需要是人工智能专家,但Uptime InsTItute建议数据中心管理人员对正在发展应用的人工智能建立基本的深度和广度。这样做意味着他们如何可以更好地确定需要多少数据,以及如何透过人工智能来使用这些数据,这在验证产出的结果和建议时是至关重要的。

在UpTIme InsTItute Intelligence最近撰写的一份题为《非常智能的数据中心:人工智能将如何推动运营决策》(Very smart data centers: How artificial Intelligence will power operaTIons decisions)的报告中,提出应该对数据中心的人工智能有更好理解的观点。

作为第一步,让我们谈谈关于人工智能的几点。首先,演算法和模型有什么不同? 在推广人工智能的人可以拿这些术语来表示相同的东西,虽然它们可能不尽相同。

演算法是一系列数学步骤或计算指令。它是一个自动指令集。演算法可以是一条指令,也可以是一串指令—它的复杂度取决于每条指令的简单或复杂程度,以及/或演算法需要执行的指令数量。

在人工智能中,模型是指能够处理数据并提供对数据的预期响应或是数学模型的结果。例如将演算法应用于数据集,结果将会是模型。因此,模型是一个或多个算法的结果。如果输入到演算法中的数据发生变化,或者相同的数据通过不同的演算法输入,模型就会发生变化。

另一个非常重要的特性是目前数据中心使用的两种主要人工智能技术:机器学习深度学习

机器学习技术主要有三种类型:

监督学习:人类提供一个模型和训练数据。演算法获取训练数据并对模型进行微调,使输入和输出/响应更紧密地匹配。随着时间的推移以及数据的增加,演算法能进一步改进模型,并能够对新数据的响应做出合理的预测。监督机器学习在数据中心和其他行业中是最常被使用的一种方式。

无监督学习:演算法从未标记的数据中发现模式或内在架构。在某些场景中,无监督机器学习技术会被拿来与监督机器学习技术相结合。实际上,从无监督机器学习的输出数据可以成为监督机器学习的训练数据。

强化学习:人类提供一个模型和未标记的数据。当一套演算法确定数据所产生的最佳化结果时,它会得到一个正的数学“奖励”。(来自谷歌的开源强化学习框架被命名为多巴胺。) 通过提供反馈,它可以通过不同的变化来进行学习,而强化学习是最新的机器学习技术。

深度学习(Deep learning)是机器学习的一个子集,它使用多层人工神经网络来构建基于大量数据的演算法,这些演算法能够找到一种最优化的方式来独自做出决策或执行任务。人类提供训练数据和演算法,计算机将这些输入分解成一个非常简单的概念层次。每个概念成为中立网络上的一个数学节点。深度学习不使用来自人类的机器学习模型,而是像使用神经网络一样使用训练数据,它的工作原理像一个决策树。它根据自己对培训数据的分析建立了新的模型。

哪种技术最适合哪种用例?这取决于算法的质量和复杂度,以及所使用的模型和数据。但是,如果所有这些都是相同的,那么有一些特定的技术特别适合于特定的用例。

有些人说,深度学习可以发现更大程度的低效,因为它不受已知模型的约束。另一方面,监督机器学习能做到更加透明(使得领域专家更容易验证结果),而且自动化的速度也更快。

它可能有所不同,但是下面是一些非常适合不同类型的机器学习和深度学习的案例。

虽然现在还处于早期阶段,但是随着时间的推移,某些技术可能会在未来主导特定的需求。

操作人员至少应该了解正在应用的人工智能,并达到一定深度和广度的基本知识水平。如果采用人工智能来帮助运营,要求供应商显示模型中的数据点以及这些节点之间的关系—换句话说,需要了解人工智能是如何使用这些数据来提出相关的建议。最后,不论是否由人员来进行操作,跟踪结果总是很重要的。

来源:云数据中心

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭