当前位置:首页 > > ZLG致远电子
[导读]目前,新基建话题带来的热度还在继续,自动驾驶该如何搭上这一快车?自动驾驶又涉及到哪些核心技术?如何利用CAN智慧云提高自动驾驶安全性能?本文将对此做逐一介绍。

聚焦深度转型汽车行业,我们可以将自动驾驶车当作一个“拥有人类眼睛的智能轮式机器人”,可以识别周边的车辆、故障、行人等情况,并对此作出精准的行为。不难知道,自动驾驶依赖于了人工智能AI、传感器、大数据、5G等技术领域,幸运的是,自动驾驶站在这些技术的交汇处。

▌自动驾驶如何步入“快车道”?

自动驾驶为何会随着新基建带来的能量一起爆发,关键还是由自动驾驶的核心技术决定的。自动驾驶实际上包含了三个问题:一是我在哪儿?二是我要去哪儿?三是我要怎么去那儿?只有完美的解决这个三问题才能算是真正的自动驾驶,这其中包含的技术模块如图1所示。

如何通过ZWS-CAN智慧云提高自动驾驶安全性?

图1 自动驾驶技术框图

◆ 传感器技术:摄像头、激光雷达、毫米级雷达等传感器技术融合,识别外界环境;

◆ 高精度定位:运用GPS、GNSS、IMU等技术实现厘米级定位;

◆ AI人工智能:关键技术,充分的利用所得信息进行分析,并决定车辆该如何行驶,算法的核心任务如图2所示;

◆ V2X通信安全:包含汽车和用户信息,对用户的身份验证和给数据加密,依赖5G的大宽带,低延时信息交互;

◆ HIM人机交互:人机交互界面用于人工处理自动驾驶机器人无法处理的情况。

如何通过ZWS-CAN智慧云提高自动驾驶安全性?

图2 自动驾驶AI核心算法任务

▌ZWS-CAN智慧云助力自动驾驶

上述图2所示,自动驾驶通过一系列的核心算法任务后,最终会通过CAN-bus总线来控制车辆ECU工作,所以CAN通讯的质量对自动驾驶车辆的性能影响巨大,同时,CAN通讯情况的反馈帮助优化AI算法。那么,在自动驾驶路试阶段,技术人员如何远程去实时分析车辆运行情况呢?

▌车载CAN-bus数据记录CANDTU系列

自动驾驶车辆在路试阶段遇到问题时,测试人员很难去分析现场出现的状况或者判断车辆运行状态是否良好。通常情况下,通过对车辆CAN报文的分析才可以了解车辆的转速、压力等情况,进而进一步反馈优化AI算法任务。

ZLG致远电子推出CAN网络总线“黑匣子”,我们称之为CANDTU,测试人员可以使用CANDTU记录路试阶段的CAN报文数据,以便对车辆进行整体故障诊断。

CANDTU产品性能如下:

◆ 集成2路或4路符合ISO11898标准的独立CAN通道;

◆ 标配存储介质32G高速SD卡,支持长时间记录、条件记录、预触发记录等多种记录模式,可以进行大数据存储;

◆ 支持ASC、CSV等多种记录数据存储格式转换,方便后期软件分析;

◆ 通过严格的抗震动、抗冲击测试,满足工业用户需求;

◆ 具备2路DI记录和2路DO报警输出;

◆ 支持GPS定位,4G通信实时上传云端,通过手机等终端实时查看汽车定位、仪表、油温油压情况,如图3所示。

如何通过ZWS-CAN智慧云提高自动驾驶安全性?

图3 CANDTU的应用

▌ZWS-CAN智慧云

自动驾驶车辆在路试阶段,测试人员是如果能够实时远程的监控车辆信息,第一时间掌握车辆的信息,那对提高车辆的性能会有很大的帮助。ZLG致远电子提供ZWS-CAN智慧云解决方案,通过CANDTU系列产品的4G通讯连接云端服务器,将CAN报文数据回显复现现场,实现远程监控自动驾驶车辆,进行故障诊断。那么,ZWS-CAN智慧云能够为自动驾驶车辆提供哪些特色服务和功能?接下来做简单介绍。

▌云端曲线,CAN报文可视化分析

ZWS-CAN智慧云能够实现DBC的可视化分析,结合丰富多彩的图形控件,及时进行CAN(FD)数据的可视化展示,直观分析车辆运行情况,如图4所示能够对信号值进行显示和信号跟踪。

如何通过ZWS-CAN智慧云提高自动驾驶安全性?

图4 CAN报文可视化分析

▌支持车载UDS诊断

用户可以通过ZWS-CAN云端服务器,直接对车辆进行标准的UDS诊断,实现对设备的监控,如图5所示。

如何通过ZWS-CAN智慧云提高自动驾驶安全性?

图5 UDS诊断功能

▌支持北斗/GPS定位

如图6所示,登陆ZWS-CAN云端服务器可以进行地图可视化的定位,实时显示车辆运行速度,对车辆运行轨迹进行记录存储。定位精度在2m左右,对车辆故障分析定位有较高的可信度,结合车辆运行状况,优化AI算法。

如何通过ZWS-CAN智慧云提高自动驾驶安全性?

图6 GPS定位地图

▌自定义测试脚本

ZWS-CAN云端服务器支持自定义测试脚本,通过编辑器与执行器功能,如图7所示可以进行发送、等待、校验、校验响应等动作,实现对设备的自动化测试,方便用户远程测试车辆性能。

如何通过ZWS-CAN智慧云提高自动驾驶安全性?

图7 自定义测试脚本


免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭