当前位置:首页 > 物联网 > 物联网技术文库
[导读] 开发新药是是一项漫长而且低效率的工作。数据显示,所有进入临床试验阶段的药物,只有不到12%的药品最终能够上市销售,而且一款新药的平均研发成本高达26亿美金。 药物研发人员需要对各种不同的

开发新药是是一项漫长而且低效率的工作。数据显示,所有进入临床试验阶段的药物,只有不到12%的药品最终能够上市销售,而且一款新药的平均研发成本高达26亿美金。

药物研发人员需要对各种不同的化合物以及化学物质进行测试,这个试验过程中的错误尝试耗费了太多的时间和金钱。由于需要测试的分子太多,研发人员不得不使用移液机器人一次测试几千种变体,然后选择最有效的变体进行动物模型或者细胞培养试验,希望其中一些最终能够进入人类临床试验阶段。

由于不断试错的成本太高,越来越多的药物开发厂商开始转向计算机和人工智能,希望利用这种技术来缩小潜在药物分子的范围,从而节省后续测试的时间和金钱。为了识别那些有很大潜力可以作为药物靶标的蛋白质的编码基因,这些厂商把希望寄托了算法上。目前,一些新的算法模型(包括近日发布在《Science Translational Medicine》上)增加了新层次的复杂性,用来缩小相关蛋白质、药物和临床数据的范围,以便更好地预测哪些基因最有可能让蛋白质和药物结合。

“许多原因都可能导致药物研发失败。”遗传流行病学家AroonHingorani说,“然而,其中一个主要的原因是没能针对疾病选择正确的靶标。”一种药物可能在细胞、组织、以及动物模型的早期实验中显示初步的前景,但是这些早期实验往往过于简单,很少使用到随机盲法实验进行对照。科学家们会使用这些结果来预测哪些蛋白质可以作为药物标靶,但是由于这些研究往往规模很小而且时间较短,因此有很多因素会造成误判。

然而,Hororani的小组并没有依赖这些有局限性的试验,他们建立了一个将基因信息、蛋白质数据结构和已知药物的作用过程相结合的预测模型。最终,他们获得了将近4500种潜在药物靶标,相比之前预测的可成药人类基因组数量,翻了一倍。然后,两名临床医生梳理出了具有正确形状和化学物质的144种药物,除了那些已经发现的可与之相结合的标靶蛋白外,这些药物还可以与其他的蛋白质结合。由于这些药物此前已经通过了安全测试,这意味它们可以很快被用于治疗其他疾病。对于药物开发商来说,时间就是金钱。

研究人员估计,大约15%~20%的新药成本都耗费在探索阶段。通常情况下,这意味着高达几亿美元的支出,以及3~6年的工作。如今,有人希望通过AI将这一过程缩短至几个月,并大幅降低研发成本。不过,目前市场上还没有一款药物是AI系统一开始挑选出来的,但是他们正在走上正轨。

Hingorani的合作者之一是BenevolentAI生物医学信息学副总裁。BenevolentAI是一家英国AI公司,最近刚刚与Janssen(强生旗下子公司)签署了一项收购和开发临床试验候选药物的协议。他们计划在今年晚些时候开始IIb阶段的试验。(IIa阶段会先入组少量受试者,确立合适的治疗剂量;IIb则是在a的基础上有效组扩大样本量,明确剂量等有效性、安全性。)

此外,其他制药企业也在纷纷跟进。据记者了解,上个月,日本眼药巨头Santen与位于Palo Alto的twoXAR公司签订了一份协议,Santen将利用twoXAR的AI技术来确定针对青光眼(glaucoma)的候选药物。而几个星期 之前,两家欧洲公司——Pharnext和Galapagos也宣布展开合作,开发AI系统模型用来寻找神经退行性疾病(neurodegeneraTIve diseases)的新疗法。

但是,长期从事药物开发研究的Derek Loewe在《Science》的个人博客上撰文称,他对于这种纯粹的计算方法持怀疑态度。“从长远来看,我并不觉得这个东西是不可能的。”他说,“但是如果有人告诉我,他们能预测所有这么多化合物的活动,那么我可能会认为这是在胡说八道。在相信之前,我想看到更多证据。”

像twoXAR这样的公司就正在努力建立起这样的证据。去年秋天,他们与斯坦福大学的Asian Liver Center(亚洲肝病中心)合作,为成年肝癌患者筛选了25000种候选药物。他们利用自己开发的计算机软件,结合遗传、蛋白质组学、药物和临床数据筛选了出了10种可能的药物。

Asian Liver Center的主任Samuel So对结果非常惊讶,因为其中几种利用计算机软件筛选出的药物和实验室研究人员的预测相同,所以他决定测试所有的10种候选药物。其中最有希望的一种药物,能够杀死5种不同的肝癌细胞,并且没有伤害到健康细胞,现在正准备进行人体试验。目前,唯一一款针对同一癌症的药物花费了5年时间才获得了FDA(美国食品药品监督管理局)的批准,而twoXAR和斯坦福到现在为止才用了4个月。

令人兴奋的是:对于失败率如此高的行业,即使是很小的进步,也可能撬动数十亿美元的市场,更不用说那些那些可能因此被拯救的生命。但是,除非通过AI系统发现的药物真正上市销售,否则这个行业的研发模式不会发生根本性的变革。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭