当前位置:首页 > 公众号精选 > strongerHuang
[导读]光纤商用化以来,随着技术的不断发展,光纤的品种经历了若干个重要发展阶段。今天,我们把阶段历程做一个简要的回顾。


来源:鲜枣课堂


光纤商用化以来,随着技术的不断发展,光纤的品种经历了若干个重要发展阶段。


今天,我们把阶段历程做一个简要的回顾:


▉ 第一阶段:多模光纤(第一窗口)


1966年7月,华裔科学家高锟就光纤传输的前景发表了具有历史意义的论文。该文分析了造成光纤传输损耗的主要原因,从理论上阐述了有可能把损耗降低到20dB/km的见解,并提出这样的光纤将可用于通信。


2009年,高锟因为对光纤事业的突出贡献,获得了诺贝尔物理学奖。


在理论的指引下,四年以后的1970年,美国康宁公司真的拉出了损耗为20dB/km的光纤,证明光纤作为通信介质的可能性


美国康宁公司


与此同时,美国贝尔实验室发明了使用砷化镓(GaAs)作为材料的半导体激光(semiconductor laser),凭借体积小的优势,大量运用于光纤通信系统中。


1972年,光纤的传输损耗降低至4dB/km。


至此,光纤通信时代,正式开启。


1972-1981年,是多模光纤研发和应用期。


前期第一个使用的光纤通信波长,是850nm,称为第一窗口


早期开发使用的,是阶跃型多模光纤。接着开发了A1a类梯度多模光纤(50/125),其衰减为3.0-3.5dB/km,带宽为200-800MHz·km,数值孔径为0.20±0.02或0.23±0.02。


后来,又开发使用了A1b类梯度多模光纤(62.5/125),其衰减为3.0-3.5dB/km,带宽为100-800MHz·km,数值孔径为0.275±0.015。


这两种光纤与850nm附近波长LED(发光二极管)相配合,形成早期的光通信系统。


当时,LED光谱宽度为40nm,注入光功率为5或20μW,最大速率为5或60Mb/s。



▉ 第二阶段:多模光纤(第二窗口)


70年代末到80年代初,光纤厂家又开发了第二窗口(1300nm)


A1a类光纤衰减0.8-1.5dB/km,带宽200-1200MHz·km。A1b类光纤衰减0.8-1.5dB/km,带宽200-1000MHz·km。


与它们相配合使用的是高辐射LED,其光谱宽度为120nm,注入光功率为20μW,最大速率为100Mb/s。



第三阶段:G.652及G.653、G.654单模光纤(第二、三窗口)


1982-1992年是G.652及G.653、G.654单模光纤的大规模应用期,打开了光纤的第二窗口(1310nm)第三窗口(1550nm)


1973-1977年,世界各大光纤制造商开发了各种先进的预制棒生产工艺——康宁开发出OVD技术;日本的NTT、住友、古河、藤仓等联合开发出VAD技术;朗讯改善了MCVD技术;荷兰菲力浦开发了PCVD技术。


1982年,由美国开始,日、德等国家紧跟,全球开始大量建设G.652单模光纤长途工程。单模光纤的市场需求大增,刺激了大规模生产。


这时,康宁的OVD进一步提高了沉积速率,VAD、MCVD、PCVD都外加套管来作为增大预制棒的措施。


此后,各家都照着两步法的混合工艺来加大预制棒。


90年代,法国阿尔卡特开发了APVD技术(MCVD+等离子喷涂工艺)。


各大光纤制造商制造技术的重大进步,为常规单模光纤的广泛应用创造了更好的条件。


1984年,第三窗口(1550nm)开始启用。


同年,CCITT(国际电报电话咨询委员会)发布G.651和G.652标准。


到1985年,G.652光纤1310nm的损耗已达0.35dB/km,1550nm的损耗已达0.21dB/km。

1985年,日本、美国研发的G.653色散位移光纤商用化,其特点是把零色散点从第二窗口移到第三窗口,1550nm波长不仅损耗最低,而且色散也最小。


1988年,CCITT发布G.653标准。此光纤大量用于日本的通信干线。


90年代初,掺铒光纤放大器(EDFA)开始商用化,促使密集波分复用(DWDM)提上议事日程。


但是,G.653光纤在1550nm波长处的零色散,造成DWDM系统波道间的非线性干扰十分严重,因而没在世界上推广开来。


1995年,我国建设京九光缆工程,24芯纤中用了六根G.653光纤,一直没开通。以后,我国也没用G.653光纤。


这一时期,还产生了一种截止波长移位的光纤。它在1550nm处不但损耗低,而且微弯损耗小,适合使用光放大器的长途干线系统和海底光缆系统。


1988年,CCITT发布G.654标准。



▉ 第四阶段:光纤窗口全开,特性全面发展


1993-2006年,光纤通信窗口扩展到4、5窗口及S波段,光纤通信窗口全面打开,新开发四种新品种光纤,光纤特性更趋完善。


(1)、非零色散位移单模光纤G.655光纤(第三、第四窗口)


为抑制密集波分复用(DWDM)系统中的四波混频(FWM)和交叉相位调制(XPM),减小光通道间的非线性干扰,非零色散位移光纤(WZDSF)在1993年问世了。


先是朗讯推出真波光纤,接着康宁推出了大有效面积LEAF光纤。


这些光纤一开始工作在第三窗口,即C波段(1530-1565nm)。1995年后,扩展到第四窗口,即L波段(1565-1625nm)。


1996年,ITU-T制定了G.655标准。1998年之后,在全世界得到广泛应用。


(2)、低水峰单模光纤G.652C(第五窗口)


1998年,朗讯推出了全波光纤(即低水峰光纤),使1383nm的水峰几乎不存在(衰减<0.31dB/km),打开了光纤的第五窗口,即E波段(1360-1460nm)。


1999年,中国开始用全波光纤做光缆,用于九江电信。


2000年,ITU-T制定了G.652C标准。


2001年,康宁做出了低水峰光纤。


2002年,G.652C光纤在全世界推广。


从此,单模光纤从1260nm至1625nm波长范围内,具有优异的衰减性能。



2002年5月,ITU-T对于单模光纤通信系统光波段划分为O、E、S、C、L、U。



多模光纤850nm称为第一窗口,单模光纤O带为第2窗口,C带称第3窗口,L带为第4窗口,E带为第5窗口。



多模光纤和单模光纤的通信波段汇总起来,如下表所示:



推荐阅读:

英特尔工艺真的落后了吗?

gcc和g++是什么,有什么区别?

预处理 #pragma 命令详解


关注 微信公众号『strongerHuang』,后台回复“1024”查看更多内容,回复“加群”按规则加入技术交流群。


长按前往图中包含的公众号关注

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在这个AI计算越来越受到关注的时代,德国一个科学家团队开发了一种可能改变游戏规则的解决方案。

关键字: 无芯片计算机 光纤 计算机 光波

随着这两个必要的条件的相续出现,光纤通信开始了它的飞速发展,拉开了光纤通信这个通信行业中最为重要的传输手段之一的技术的序幕。

关键字: 光纤通信 光纤 激光器

光通信是以光波为信息载体,以光纤为传输媒介的通信方式。相比传统的电通信,光通信具有传输带宽大、传输损耗低、成本低、保密性好等优点。光通信系统的基本组成包括光源、光发送机、光纤、光接收机和光检测器等设备。

关键字: 光通信 光纤

由南卡罗来纳州州长亨利·麦克马斯特(Henry McMaster)阁下揭幕  投资5600万美元  承诺推动美国乡村宽带建设并...

关键字: 光纤 电缆 ST BSP

光纤测温系统分为三种,一种是荧光光纤测温、一种是分布式光纤测温、还有一种是光纤光栅测温。

关键字: 光纤 高温 测量仪 荧光光纤测温

新产品同时支持铜缆和光纤接口,增加了航天应用的灵活性

关键字: 以太网 铜缆 光纤

随着信息技术的发展,各种传感器的使用越来越普遍。在传感器的种类中,光纤传感器无疑是一种重要的组成部分。光纤传感器是一种利用光纤技术来检测物理量的传感器。光纤传感器能够检测的物理量包括温度、压力、湿度、电磁场强度等。由于光...

关键字: 光纤 传感器 物联网

近日,全球多元化化工企业沙特基础工业公司(SABIC)与中国广东蓝光智能科技有限公司展开合作,开发了其首款用于波分复用(WDM)模块的集成式单模光纤透镜阵列。

关键字: 光纤 光通信

据 21ic 获悉,近日中国信科集团光通信技术和网络全国重点实验室以总传输容量 4.1Pb/s、净传输容量 3.61P/s 的单模 19 芯光纤传输系统实验结果,再一次刷新了单模多芯光纤传输容量的世界纪录。

关键字: 单模多芯 光纤

据业内消息,英国运营商BT因为半自治网络接入部门Openreach因为成本的激增,已经暂停了光纤网络的建设。

关键字: Openreach 光纤 英国电信 BT
关闭
关闭