当前位置:首页 > 电源 > 电源电路
[导读]要想理解和管理FPGA设计师如何在设计周期早期在FPGA上实现高处理状态和低处理状态之间的转换,将显著影响电源设计师优化电源设计和满足系统功耗要求的可选方法。

要想理解和管理FPGA设计师如何在设计周期早期在FPGA上实现高处理状态和低处理状态之间的转换,将显著影响电源设计师优化电源设计和满足系统功耗要求的可选方法。FPGA中的每个电源轨没有要求也没有必要采用独立的电源,因为这样会增加成本,占用太多宝贵的电路板空间。相反,电源设计师可以使用分布式电源网络,由降压稳压器将系统电源降下来,然后分配给各个负载点稳压器再提供每个电压轨。每个稳压器设计提供恒定的输出电压,只要确保输入电压和输出负载电流在设计范围内。

如果设计师可以在开发过程早期就满足基于FPGA的设计,提出的功耗要求和约束条件,那么在系统的最终实现阶段就能形成极具竞争力的优势。然而,根据整个技术文献中这种自我暗示式的反复祷告,今天基于FPGA的系统中还有什么会使得完全遵循这个建议变得不切实际或过于困难呢?尽管能够使用各种开发工具,如专门针对FPGA项目开发的早期功耗预估器和功耗分析器,但对电源设计师来说,在设计过程早期就考虑最坏情况而不是最佳情况的电源系统是有好处的,因为在许多方面仍有太多的不确定性,比如在硬件设计完成和功耗可以测量之前,静态小电流状态与全速工作状态之间的动态负载要求将如何波动。

采用并行工程(CE)技术,可以为在项目中使用FPGA器件的开发团队,提供一种快速方便地在当前设计的处理性能、材料清单(BOM)成本和效率之间寻找和实现最有效平衡的方法吗?理解并行工程如何影响一个团队的设计工作,以及它如何影响开发团队从项目一开始就解决FPGA及系统其余部分的电源要求的能力,都有助于回答这个问题(参考副标题“并行工程”)。

并行工程,是一种有助于设计团队更加快速地发现和解决一起协作产生最终设计的各门科目之间假设脱节问题的机制。任何开发团队在设计开始就完全正确地获得一个复杂系统的全部要求基本上是不可能的——因此尽可能早地发现、判断和放弃假设与设计决策的脱节、并用能够以可能最低的成本指导项目更接近理想结果的条件与决策来代替是更加高效的一种方法。

后期设计阶段和最坏情况下,FPGA电源系统设计的复杂性和潜在后果足以证明采用并行工程方法的合理性吗?为了回答这个问题,我们需要理解:FPGA电源系统设计师面临的设计复杂性和不确定性根源是什么,这些原因如何影响他们在设计电源时必须做出的权衡决策?

并行工程适用于FPGA电源设计吗?

复杂性和不确定性

设计团队中的每位成员都在经历复杂性和不确定性的增加——幸运的是,提高集成度和抽象水平多少可以降低一些复杂性和不确定性,并有助于将整体复杂性保持在人类设计师能够理解和应付的范围内。正如任何会在设计后期增加其影响力的科目一样,上游设计假设与决策可能会形成额外的复杂性与不确定性来源,如果能够较早地协调与交流,可以最大程度地减小这些复杂性与不确定性。

电源设计是在复杂性日益增加的系统中这些潜在的下游科目之一。在本例中,让我们从电源设计师的角度看一下复杂性和不确定性的来源。影响电源设计的两个关键FPGA因素是电压和电流要求。

FPGA电压要求趋势正在推升复杂性,因为它们要求日益增多的电源轨。今天的高端FPGA不再只是需要两个电源轨用于内核和I/O单元以及可能第三个电源轨用于辅助功能,而是要求十个以上的外部驱动电源轨。

为什么需要的电源轨数量增加得如此显著呢?SRAM单元可能要求比内部逻辑门稍微高一点的电压,以确保可靠的全速工作,同时还需较低的电压用于待机模式。工业标准会防止不同的I/O单元共享相同的电源轨,从而增加所需的电源轨数量,因为它们可能将不同的I/O单元和物理收发接口锁定到具有不同电源噪声极限和电压值的不同电源。举例来说,以太网工作时的I/O电压可能不同于I2C总线。一种是板上总线,另一种是外部总线,但两者都可以用FPGA实现。减少抖动或提高敏感电路(如低噪声放大器、锁相环、收发器和精密模拟电路)的噪声余量,也可能增加对更多电源轨的需求,因为它们无法与较高噪声元件共享相同的电源轨,即使它们工作在相同的电压。

除了要求日益增多的电源轨外,当前FPGA的工作电压也要比以前的FPGA低,因为这有助于降低功耗,提高集成度,但也增加了复杂性,因为电源必须能够保持越来越严格的电压容差要求(见图1)。举个例子,自从用130nm工艺生产FPGA以来,基于28nm技术节点的FPGA的内核电压纹波容差的公开幅度已经降低了一半还多。误差预算百分比已经从5%下降到3%,并正在向2%迈进。保持电压容差要求与理解并满足FPGA电流要求有关。

图1:经过4代工艺技术节点的发展,平均电压纹波容差下降了一半还多,对电源设计师来说这就是增加复杂性的原因。

FPGA电流特征趋势正在推动复杂性的提高,因为FPGA中更高的密度和包含的外设/功能/IP模块的数量正在呈摩尔定律增长——每两代工艺节点相比,相同面积的硅片所容纳的模块数量基本要翻倍。虽然提供给FPGA的电压是固定的,但每个电压的工作电流不是固定的,会根据FPGA逻辑的实现方法变化而发生波动。

当内部逻辑门块或I/O单元在高利用率和低利用率之间转换时,电流波动异常剧烈。随着FPGA切换到更高的处理速率,消耗电流将增加,电压将趋于下降。一个好的电源设计要防止压降超过电压瞬时门限。同样,当FPGA切换到较低处理速率时,电流消耗将下降,电压将趋于提高,电源设计应防止其超过相应的门限。总之,可能会实质影响电源设计的大量不确定性源自FPGA设计师如何在FPGA上实现系统。

这类不确定性特别影响FPGA系统,部分原因是因为使用FPGA的关键特性之一是,设计师可以创建任何大小的处理资源和任意数量的冗余处理资源,以便与软件可编程处理器相比能用较短的时间和/或较低的功耗解决他们的问题。因此,虽然软件可编程处理器拥有可以同时操作的有限处理资源,但FPGA提供了创建专门的、最优的和定制的处理资源的机会,不过要求定制的电源设计。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

利用LogiCoA™微控制器,以更低功耗实现与全数字控制电源同等的功能

关键字: 微控制器 电源 CPU

甲类电源是一种开关式电源,它通过快速开关来控制电压,使输出电压保持恒定。甲类电源的输出电流波形接近直流,能够提供高效率和高功率输出。

关键字: 甲类电源 线性电源 电源

复位电路是一种用来使电路恢复到起始状态的电路设备,它的操作原理与计算器有着异曲同工之妙,只是启动原理和手段有所不同。复位电路,就是利用它把电路恢复到起始状态

关键字: 复位电路 电容 电源

TDK株式会社(东京证券交易所代码:6762)新近推出了爱普科斯 (EPCOS) B43659系列焊片式铝电解电容器。新系列元件是一款结构更紧凑的新一代通用型产品,工作电压为450 V(直流),具有更高的CV值,功能及适...

关键字: 电容器 光伏逆变器 电源

开关电源作为电子设备中的核心部件,负责将交流电转换为稳定的直流电,为设备的正常运行提供可靠的电力保障。然而,随着使用时间的增长和外部环境的变化,开关电源也可能出现故障,影响其正常工作。本文将重点介绍开关电源的常见故障及其...

关键字: 开关电源 电源 电子设备

开关电源作为电子设备中的关键部件,其稳定性和可靠性对于设备的正常运行至关重要。然而,在使用过程中,开关电源有时也会出现故障,需要进行维修。本文将为您详细介绍开关电源的维修步骤,帮助您快速解决电源问题,恢复设备的正常使用。

关键字: 开关电源 电源 电子设备

随着科技的飞速发展,电子设备已经渗透到我们生活的方方面面,从智能手机、电脑到家用电器,无一不需要稳定的电力供应。而在这背后,开关电源作为电力转换和管理的关键部件,正发挥着至关重要的作用。本文将深入探讨开关电源在现代科技中...

关键字: 开关电源 电源

在现代电子技术的飞速发展中,电源滤波器的应用变得日益广泛。作为电子设备中的关键组件,电源滤波器在抑制电磁干扰、提高设备性能、增强设备可靠性以及保护设备安全等方面发挥着至关重要的作用。那么,电源为什么要滤波呢?本文将从科技...

关键字: 电源 滤波器

高带宽和软开关拓扑是应对当前苛刻的电动汽车电源电子技术挑战的理想解决方案

关键字: 软开关拓扑 电动汽车 电源

Bluespec支持加速器功能的RISC-V处理器将Achronix的FPGA转化为可编程SoC

关键字: RISC-V处理器 FPGA SoC
关闭
关闭