当前位置:首页 > > 21ic电子网
[导读]高精度小微稳压,必看的知识点!

出品  21ic论坛  captzs

网站:bbs.21ic.com


1、高精度小微稳压(几十~几百mV)

 

下图复合三极管的输出电压U是下管E结导通压降减去C结压降与上管E结压降的并联值,U=Vbea-(Vbca//Vbeb),当Isc<

 

老兵精讲:高精度小微稳压



 

2、温度电压当量的补偿

 

按照以下参数计算的输出电压U=VtLn(Isb/Isa)=VtLn[(1e-6)/(1e-20)]=833.9mV。但是仿真输出电压是816.3mV如左图。计算Ib产生的误差ΔV=VtLn(1+1/50)=0.5mV很小可忽略。误差是如何产生的?Qb的C极悬空,在27℃时C结温度电压当量Vt=26mV 叠加E结的压降,输出电压就相应减少,如果补偿一个26mV的电压抵消Vt,输出电压U与计算值就一致如右图。

 

 

老兵精讲:高精度小微稳压

 

3、如果不加补偿电压,Qb的C极短接到B或E极将Vt电压短路消除其影响如右图。

  

老兵精讲:高精度小微稳压

 

4、上述电路上管使用PNP管也可以如下图。

 

这里说一说实际电路PN结的正向导通压降,去年初我发过一帖,随机用两个二极管仿真正向导通压降是0.4~0.9V,既然是随机,就不能作为实际二极管的导通压降范围的依据。那么是多少呢?应该按照Vd=VtLn(Id/Is)计算,要强调的是此公式的使用是有默认条件的。如果超出条件,Vd可能是几十mV或者几V。

 

老兵精讲:高精度小微稳压

 

5、两个二极管行不行?

 

由于两个二极管导通电流分两路,虽然可以调节在某一温度附近电流一样,但是当温度变化大时,电流改变不一致,稳压精度稍差,而且两个管的Is参数选择也受限制。下图是温度差70℃的比对。电路加以改进可以输入双向信号,限幅输出。三极管要实现双向限压较复杂。

 

老兵精讲:高精度小微稳压 

6、仿真结果供参考:


老兵精讲:高精度小微稳压

稳压特性


电路有个“最佳工作点” Vopt,在其右侧(Vin > Vopt) 是稳压区。


老兵精讲:高精度小微稳压


电路输出电压与温度有关,温度越高稳压输出电压越大。


老兵精讲:高精度小微稳压


电路输出电压与温度呈线性关系。因此这个电路是个优良的温度传感器。

 

由于输出稳压与Is成指数关系,而上下管的Is不一样,当温度大时,Is增加过大的就接近Id,就不呈指数关系,造成误差,这个可以推导计算。避免的办法是,两个Is尽量小,就是你所说的最佳工作点。

 

如果选择上下管的Is一样,精度最好。要注意的是,Is要<

 

网友问答:

 

问:用内建电场电位差Vo=VtLn(NaND/n i ²)计算PN结的正向导通电压,其中NaND掺杂浓度制作工艺数据难以得到,这是理论研究用的。不如用PN结伏安特性表达式移项得到导通压降Vd=VtLn(Id/Is),其中反向饱和电流Is参数容易找到。

 

答:当两管的Is参数接近或一样,稳压输出就是几十mV,由于它们的变化一致,所以精度最高。如果您能够实物试验,那就再好不过。我只会仿真。


老兵精讲:高精度小微稳压 

问:我是实物测试的。我的意思是,Vbe才650mV,还要减去一个Vbe,怎么还能得到833mV?哪怕200mV都得不到。我只量到20多mV,并且随输入电压(即输入电流)变化而变化,温度变化也非常大。

 

答:非常难得,您用实物实验,谢谢分享!

 

按照Vbe=650mV估计,你选择的三极管Is参数应该是1e-13A左右,就不知道上边那个三极管的Is是多少?如果用同样型号,输出在二十几mV就对了。如果选择Is=1e-10A三极管,输出应该是150mV左右,电源用几V,输入电阻用1K。


本文系21ic论坛网友captzs原创



老兵精讲:高精度小微稳压

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭