当前位置:首页 > 模拟 > 模拟技术
[导读]在设计计算机芯片时,一个更费力但也非常重要的任务是在所谓的芯片平面图中放置零部件。所有物理部件的放置会产生巨大的影响,影响功耗、性能和芯片面积,需要人类设计师花费数月时间来完成。



一直以来,芯片设计的难度丝毫不亚于芯片制造工艺。直到八十年代EDA技术诞生以后,芯片自动化设计的出现帮助芯片设计以及超大规模集成电路的难度大大降低,工程师只需要将芯片的功能用编程语言进行描述并输入计算机,再由EDA工具软件将语言编译成逻辑电路,然后再进行调试即可。但现在的芯片越来越高端,动辄上百亿个晶体管布局,即使依靠EDA工具进行芯片设计,如此浩瀚的工程往往也需要几个月的时间来完成。在设计计算机芯片时,一个更费力但也非常重要的任务是在所谓的芯片平面图中放置零部件。所有物理部件的放置会产生巨大的影响,影响功耗、性能和芯片面积,需要人类设计师花费数月时间来完成。

近日,来自美国加州谷歌研究院的科学家,通过一种深度强化学习方法完成了芯片的布局设计。原本人类专家需要花费数周时间完成的过程,现在平均6小时内就能完成,速度超过28倍。

一般情况下,微芯片的面积约为几十到数百毫米平方,在一块指甲盖大小的硅片上排列并互连了数十亿个晶体管。每个芯片上包含数了千万个逻辑门(称为标准单元),以及数千个存储块(称为宏块或宏)。到目前为止,尤其是在布局规划方面还没有任何自动化尝试,它常常是由专业的人类工程师在数周或数月内努力工作而出。在芯片的设计过程中,全局布线是最复杂和耗时的阶段之一,也是决定芯片整体性能的关键。针对这一板块的缺失,谷歌的研究团队研究开发出一种机器学习工具,用来加速布局规划的流程。

芯片布局无论是手动还是自动化,都需要计算、电子工程和设备物理方面的专业知识。这些技能需要时间来学习,在一个生产微芯片以外许多其他产品的行业中,同样非常需要这些技能。科学家们将芯片的布局规划部分设计为一个强化学习问题,开发出可完成的芯片设计神经网络。

将芯片的布局规划看作一个深度强化学习问题,谷歌大脑团队希望用 AI 来提升芯片设计效率。基于 AI 的最新设计方案可以在数小时内完成人类设计师耗费数月才能完成的芯片布局,这将有可能引领一场新的芯片效率革命。2020 年 4 月,包括 Google AI 负责人 Jeff Dean 在内的谷歌大脑研究者描述了一种基于 AI 的芯片设计方法,该方法可以从过往经验中学习并随时间推移不断改进,从而能够更好地生成不可见(unseen)组件的架构。

近日,谷歌大脑团队联合斯坦福大学的研究者对这一基于 AI 的芯片设计方法进行了改进,并将其应用于不久前 Google I/O 2021 大会上正式发布的、下一代张量处理单元(TPU v4)加速器的产品中。谷歌此前表示,TPUv4 可以在目标检测、图像分类、自然语言处理、机器翻译和推荐基准等工作负载上优于上一代 TPU 产品。

相关论文研究已经在 Nature 上发表,Jeff Dean 为核心作者之一。据介绍,在不到六小时的时间内,谷歌 AI 芯片设计方法自动生成的芯片布局在功耗、性能和芯片面积等所有关键指标上都优于或媲美人类,而工程师需要耗费数月的艰苦努力才能达到类似效果。

这项基于强化学习的快速芯片设计方法对于资金紧张的初创企业大有裨益,如果谷歌公开相关技术的话,这些初创企业可以开发自己的 AI 和其他专用芯片。并且,这种方法有助于缩短芯片设计周期,从而使得硬件可以更好地适应快速发展的技术研究。

谷歌工程师在论文中指出,这项工作对芯片行业有“重大影响”。这可以让公司在设计芯片时探索架构可能性的速度更快,为特定工作负载定制芯片也更便捷。

谷歌工程师利用芯片版面规划数据集来训练一种强化的机器学习算法,其中有1万个不同质量的芯片版面规划图,一些规划是随机生成的。每个规划图所需电线长度和功耗有所不同。然后,训练后的算法利用这些数据来区分版面规划的好坏,并相应生成新的设计。

当人工智能在棋类游戏中挑战人类时,机器并不一定像人类那样思考,而且经常会对熟悉问题提出意想不到的解决方案。DeepMind的AlphaGo与围棋冠军李世石对弈时就是如此,人工智能看似不合逻辑的一步棋却最终取得了胜利。

但这远不是人工智能辅助芯片设计的唯一应用。谷歌还在“架构探索”等芯片设计过程的其他部分使用人工智能,而英伟达等竞争对手也在研究其他方法来加快芯片研发工作流程。用人工智能设计人工智能芯片的良性循环似乎才刚刚开始。





本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭