当前位置:首页 > 公众号精选 > SiP与先进封装技术
[导读]关键词KeyWords摩尔定律,功能密度定律,功能密度,功能单位,电子系统6级分类法,功能细胞,功能块,功能单元,微系统,常系统,大系统Moore'sLaw,FunctionDensityLaw,FunctionDensity,FunctionUNITs,6-levelclass...


关 键 词 Key Words




摩尔定律,功能密度定律,功能密度,功能单位,电子系统6级分类法,功能细胞,功能块,功能单元,微系统,常系统,大系统Moore's Law, Function Density Law, Function Density, Function UNITs, 6-level classification of electronic system, Function Cell, Function Block, Function Unit, Microsystem, Common System, Giant system.


摩尔定律 VS 功能密度定律

众所周知,随着IC工艺的特征尺寸向5nm、3nm迈进,摩尔定律已经要走到尽头了,那么,有什么定律能接替摩尔定律呢?这就是我们今天要提出的:“功能密度定律-Function Density Law”,简称“FD Law”。首先,让我们回顾一下摩尔定律。

1. 摩 尔 定 律


摩尔定律(Moore's Law)是由英特尔(Intel)创始人之一戈登·摩尔(Gordon Moore)于1965年提出来的,至今已有55年。

摩尔定律内容为:当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。换言之,每一美元所能买到的电脑性能,将每隔18-24个月翻一倍以上。总得来说,摩尔定律有以下三种说法:
1、集成电路芯片上所集成的电路的数目,每隔18-24个月就翻一番。2、微处理器的性能每隔18-24个月提高一倍,而价格下降一倍。3、用一个美元所能买到的电脑性能,每隔18-24个月翻两番。以上几种说法中,以第一种说法最为普遍,第二、三两种说法涉及到价格因素,其实质是一样的。三种说法虽然各有千秋,但在一点上是共同的,即"翻番"的周期都是18-24个月,至于"翻一番"(或两番)的是"集成电路芯片上所集成的电路的数目",是整个"计算机的性能",还是"一个美元所能买到的性能"就见仁见智了。这一定律揭示了信息技术进步的速度,尽管这种趋势已经持续了超过半个世纪,摩尔定律仍应该被认为是观测或推测,而不是一个物理或自然法。摩尔定律到底准不准?让我们先来看下面一张图,从图中可以看出,采样点基本位于曲线的附近,可以看出摩尔定律基本上还是准确的。


摩尔定律并非数学或者物理定律,而是对发展趋势的一种预测,因此,无论是文字表述还是定量计算,都应当容许一定的宽裕度。从这个意义上看,摩尔的预言是相当准确了,所以才会被业界人士的公认,并产生巨大的反响。"摩尔定律"的终结摩尔定律问世至今已55年了,我们知道:芯片上元件的几何尺寸总不可能无限制地缩小下去,这就意味着,总有一天,芯片单位面积上可集成的元件数量会达到极限。从技术的角度看,随着硅片上线路密度的增加,其复杂性和差错率也将呈指数增长,同时也使全面而彻底的芯片测试几乎成为不可能。一旦芯片上特征尺寸达到1纳米时,相当于只有5个硅原子的大小,这种情况下材料的物理、化学性能将发生质的变化,致使采用现行工艺的半导体器件不能正常工作,摩尔定律也就要走到它的尽头了。

2. 功能密度定律


既然摩尔定律已经要走到尽头了,就需要有一个新的定律来接替摩尔定律,有什么定律能接替摩尔定律呢?

这就是我们今天要提出的:“功能密度定律”(Function Density Law)。

功能密度定律:对于所有的电子系统来说,沿着时间轴,系统空间内的功能密度总是在持续不断地增大,并且会一直持续下去。

Function Density Law:For all electronic systems, along the time axis, the function density in system space is constantly increasing and will continue.

下图为功能密度定律的曲线描述:



从以上曲线可以看出,电子系统的功能密度会随着时间延续而持续地增长,其增长的快慢在不同的历史时期会有所不同,如果有新的技术的突破,其增长的就会比较快,如果没有新技术突破,其增长则会比较缓慢,但总的趋势是不断增长。

要理解功能密度定律,首先我们要理解什么是功能密度?功能密度:单位体积内包含的功能单位的数量称为功能密度。Function density: The number of Function UNITs contained in a unit volume is called function density.功能密度中的关键词是功能单位,那什么又是功能单位(Function UNITs)呢?我们需要了解一下电子系统的6级功能分类。
电子系统6级分类法:

6-levels classification of electric system:


  1. 功能细胞Function cell(FC),功能细胞是电子系统组成的最小功能单位,不可拆分,如果拆分,功能则会丧失,不可恢复,例如晶体管Transistor,电阻、电容、电感等都是功能细胞。

  2. 功能块,Function block(FB),功能块由功能细胞组成,具有一定的逻辑功能,例如,6个Transistor可以组成一个SRAM存储功能块,1个Transistor和1个电容可以以组成一个DRAM存储功能块,4个MOS管可以组成一个与非门或者或非门。功能块是具有特定功能的功能单位。

  3. 功能单元,Function unit(FU),功能单元由功能块组成,可以完成复杂功能的功能单位,例如算术逻辑单元(ALU),输入输出控制单元(IO Control Unit),中央处理单元(CPU)等,计算机的处理器,DSP,FPGA,存储器等都可以归属于功能单元这一级别的功能单位。

  4. 微系统,Micro System(MS),到这一级别,我们开始定义系统的概念,微系统可以独立完成系统功能,并且体积较小,通常并不直接和最终用户打交道,例如SiP, SoC,SoP等,微系统通常可由功能单元、功能块或者功能细胞组成。

  5. 常系统,Common System(CS),也可称之为常规系统,顾名思义就是常人能接触到的系统,一般是指和最终用户直接打交道的系统,这里的最终用户指的是人。例如手机,电脑,家用电器等都可称为常系统,常系统通常由微系统、功能单元组成;

  6. 大系统,Giant System(GS),一般是指复杂而庞大的系统,例如无线通信网络系统,互联网系统,载入航天系统、空间站系统等,大系统通常由常系统、微系统等组成。


在以上的定义中,功能细胞(FC),功能块(FB),功能单元(FU),都可以称之为功能单位(FUs),它们分别属于不同级别的功能单位。

我们再回顾一下功能密度的定义:

单位体积内包含的功能单位的数量称为功能密度。这其中的功能单位(Function UNITs)可以是:功能块(Function Block),功能细胞(Function Cell)或者功能单元(Function Unit)。

需要读者注意的是:在进行同一类型系统的功能密度比较时,需要采用相同级别的功能密度定义。例如,系统A、B、C的功能密度进行比较,A采用功能块(Function Block)作为功能单位来定义功能密度,则B和C同样需要采用功能块(Function Block)作为功能单位来定义功能密度。



3. 功能密度定律的意义


如果将功能密度定义中的功能单位具体为功能细胞(Transistor),并将其空间二维化,将其时间具体化,那么,功能密度定律就会缩化为摩尔定律。

如果将集成电路上的晶体管集成从二维平面扩展为三维空间,将晶体管扩展为功能单位,并将时间由具体变为趋势化,那么,摩尔定律就会扩展为功能密度定律。

我们也可以这么理解,对于电子系统的集成来说,摩尔定律是功能密度定律的在集成电路上特例,而功能密度定律则是摩尔定律在整个电子系统的扩展。



也许会有人问,为什么功能密度定义时用的不是确定的功能单位,而是三个层次的功能单位(功能块FB,功能细胞FC,功能单元FU)呢?这是由于功能本身的复杂性和不确定性。

例如,新技术的发展,功能块的结构发生了进化,仅需要更小的功能块(Function Block) 就可以实现同样的功能,这样,即使最底层的功能细胞(Function Cell)Transistor的数量没有变化,其功能密度也同样是增加的。

比如我们通常用的SRAM需要6个晶体管(Transistor)可以实现一个存储单元,称为6T,一种新技术的出现据说可以用1个晶体管实现一个存储单元,称为1T,这样,即使单位体积内的晶体管数量不变,其功能密度却增加了6倍。

以此类推......



4. 小结 和 展望


功能密度定律预测了电子系统集成的趋势,并将成为判断电子系统先进性的重要指标!

摩尔定律是关于人类创造力的定律,实际上是关于人类信念的定律,当人们相信某件事情一定能做到时,就会努力去实现它。摩尔当初提出他的观察报告时,实际上是给了人们一种信念,使大家相信他预言的趋势一定会持续。

功能密度定律同样是关于人类创造力的定律,也是关于人类信念的定律,当人们相信电子系统空间内的功能密度一定能会持续增加时,同样会努力去实现。

功能密度定律(Function Density Law,简称FD Law)是作者Suny Li(Li Yang)于2020年1月20号在本文中首次正式提出。在此之前,作者经历了20年的电子系统设计,积累了丰富的项目经验,并且通过了长久的分析和思考而得出。功能密度定律(FD Law)会不会像摩尔定律(Moore's Law)一样,成为电子系统集成的最重要定律呢?

现在,我们还不急着给出定论,等十年以后的2030年我们再看吧!


不再纠结于二维平面尺度上晶体管的缩放,而把思维投入到更广阔的空间,从多维度的集成,从结构化的创新,从更灵活的尺度去评判,去发展!

理解并运用功能密度定律,你就不会再纠结摩尔定律的终结,因为新的空间已经为我们打开,并且更为广阔!


正如人们常说的:“山重水复疑无路,柳暗花明又一村!”


功能密度定律是作者在本文首次提出,或许还有其不完善的地方,也欢迎大家留言讨论!



2020 0120

新 春 快 乐

   



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

业内消息,本周清华大学自动化系教授、中国工程院院士戴琼海,助理教授吴嘉敏与电子工程系副教授方璐,副研究员乔飞联合攻关提出了一种 “挣脱” 摩尔定律的全新计算架构:光电模拟芯片,算力达到目前高性能商用芯片的 3000 余倍...

关键字: 摩尔定律 清华 光电模拟芯片

在过去数十年,摩尔定律一直支配着半导体的发展。随着MCU的性能越来越强,嵌入式产品也越来越智能,嵌入式软件也变得越来越复杂。编译器作为嵌入式软件开发的基础工具,将程序员编写的源代码转换为底层硬件可以执行的机器指令。一款优...

关键字: 摩尔定律 嵌入式 软件开发 编译器

据报告,长电科技公司推出的XDFOI Chiplet高密度多维异构集成系列工艺已进入稳定量产阶段,同步实现国际客户4nm节点多芯片系统集成封装产品出货。

关键字: Chiplet 通信 摩尔定律

从1992年开始,康强电子深耕半导体封装材料领域,以技术创新为驱动,穿越行业周期,不断发展壮大。其三大业务领域引线框架、键合丝与电极丝均为国内翘楚,其中引线框架产销量在国内同行中连续数年排名第一,全球市场占有率位居前七,...

关键字: 半导体 三菱电机 芯片 摩尔定律

在探讨Chiplet(小芯片)之前,摩尔定律是绕不开的话题。戈登·摩尔先生在1965 年提出了摩尔定律:每年单位面积内的晶体管数量会增加一倍,性能也会提升一倍。这意味着,在相同价格的基础上,能获得的晶体管数量翻倍。不过,...

关键字: Chiplet 小芯片 摩尔定律

回顾即将过去的三月,尽管本月是许多股票上市的半导体公司发布2022年年报的月份,也是很多全球重要半导体行业活动开始登场的月份,但是半导体领域内最值得关注的既不是某家公司的年报,也不是某家公司发起的大型收购。业界谈论最多的...

关键字: 半导体 摩尔定律 嵌入式

据业内信息报道,Intel 和戈登与贝蒂摩尔基金会讣告联合创始人 Gordon·Moore 于上周五在夏威夷的家中离世,享年 94 岁。Gordon·Moore 不仅创造了 Intel,也创造了业内发展灯塔的摩尔定律,并...

关键字: Intel 摩尔定律 Gordon·Moore

随着摩尔定律放缓,单一芯片的微缩越来越难,因此近年来Chiplet小芯片成为继续提升芯片集成度的重要解决方案,AMD、Intel等芯片巨头已经发布了多款Chiplet技术的高性能芯片,这些企业还组团成立了UCIe联盟以标...

关键字: Chiplet 通信 摩尔定律

利用原子钟授时现已成为数据中心不可或缺的组成部分。目前,通过全球定位系统(GPS)和其他全球导航卫星系统(GNSS)网络传输的原子钟时间已使全球各地的服务器实现了同步,并且部署在各个数据中心的原子钟可在传输时间不可用时保...

关键字: 原子钟 数据中心 摩尔定律

是德科技与 Cliosoft 携手,继续支持所有主要的 EDA 厂商环境,并提供先进工具加速工作流程的运转,从而促进 EDA 生态系统持续扩张,为客户提供更多优势

关键字: 是德科技 EDA 摩尔定律
关闭
关闭