当前位置:首页 > 公众号精选 > 亚德诺半导体
[导读]开关调节器中的快速开关瞬变是有利的,因为这显著降低了开关模式电源中的开关损耗。尤其是在高开关频率时,可以大幅提高开关调节器的效率。但是,快速开关转换也会带来一些负面影响。开关转换频率在20MHz和200MHz之间时,干扰会急剧增加。这就使得开关模式电源开发人员必须在高频率范围内,...




开关调节器中的快速开关瞬变是有利的,因为这显著降低了开关模式电源中的开关损耗。尤其是在高开关频率时,可以大幅提高开关调节器的效率。但是,快速开关转换也会带来一些负面影响。开关转换频率在20MHz和200MHz之间时,干扰会急剧增加。这就使得开关模式电源开发人员必须在高频率范围内,在高效率和低干扰之间找到良好的折衷方案。此外,ADI提出了创新的Silent Switcher™技术,即使是极快的开关边沿,也可能产生最小电磁辐射。



开关转换时,最大效率与最小电磁干扰可以“兼得”~

图1. 对开关模式电源进行开关转换,在开关节点处施加输入电压。


图1显示了快速和慢速开关转换。快速开关转换会给邻近电路段产生更强的干扰耦合。存在电压突变的PCB走线可与具有高阻抗的邻近走线产生容性耦合。存在电流突变的PCB走线可与邻近走线产生电感耦合。通过减慢开关转换,可将这些影响降至最低。图2显示了一种经验证适用于异步开关调节器的技术。此处,两个开关中的一个使用了肖特基二极管。将电阻与自举电容CBOOT(提供高边n沟道MOSFET的栅极电压)串联,可减慢开关的开关转换。当无法直接调整功率MOSFET的栅极信号线时,此技巧可用于集成开关调节器。如果将开关控制器与外部MOSFET配合使用,也可将电阻插入栅极驱动走线中。电阻值通常小于100Q。

开关转换时,最大效率与最小电磁干扰可以“兼得”~

图2. 使用自举电阻减慢异步降压转换器中的开关转换。


但是,大多数现代开关调节器都是具有高边和低边有源开关的同步开关调节器。此处,在CBOOT路径中使用电阻无法明显减慢开关转换。如果此处还是使用与CBOOT串联的电阻(如图3所示),则也将减慢高边开关的开关转换。但是,这可能导致低边开关没有完全关闭。因此,高边开关和低边开关可能同时瞬间打开。这将导致输入电压到接地之间出现破坏性短路。这一点尤为关键,因为开关转换速度也受到工作温度等参数和半导体制造中的可变性的影响。因此,即使是在实验室测试,也无法保证安全操作。
要减慢具有集成开关的同步开关调节器的开关转换,应使用可通过内部电路直接设置开关转换速度的同步开关调节器,例如ADI的ADP5014。在这些集成电路中,可在内部确保:在减慢开关转换时,两个开关不同时导通,因此也不会发生短路,并且在CBOOT路径中都没有电阻。

开关转换时,最大效率与最小电磁干扰可以“兼得”~

图3. 由于高端开关转换减慢而可能短路的同步降压转换器。


关于快速开关转换,近年来有一个非常重要的创新不容忽视。ADI的Silent Switcher技术使快速开关边沿的电磁辐射大幅降低,高达40dB(10,000倍)。因此。可开发出具有超快边沿且仅有最小EMC问题的开关模式电源。在大多数情况下,Silent Switcher器件无需为了减少EMI而降低开关转换速度。通过Silent Switcher技术,在很大程度上消除了在最大转换效率和最小电磁干扰之间进行权衡的难题。开关转换时,最大效率与最小电磁干扰可以“兼得”~极端高温气候频出,恶劣环境下的电子产品如何“存活”?
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

覆盖频率1 MHz至75 GHz 的10种新型射频开关 尔湾,加利福尼亚州2024年7月26日 /美通社/ -- Infinite Electronics 旗下品牌,业界领...

关键字: 开关 PIN二极管 超宽带 TE

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

关键字: 电磁干扰 滤波器 功率变换

开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

关键字: 电磁干扰 滤波器(EMI) 整流

在现代电子系统设计中,电源不仅是设备正常运行的基石,也是电磁干扰(EMI, Electromagnetic Interference)的主要来源之一。EMI不仅会影响电源自身的稳定性和效率,还可能对系统中的其他电子设备造...

关键字: 电源 电磁干扰 EMI

随着现代电子技术的飞速发展,电子设备在各个领域的应用日益广泛。然而,电子设备在工作过程中产生的电磁干扰(EMI)问题也日益凸显,成为影响设备性能、稳定性和兼容性的重要因素。为了确保电子设备的正常运行和满足电磁兼容性要求,...

关键字: 电子设备 电磁干扰 电磁兼容

随着电子技术的飞速发展,电磁干扰(EMI)问题愈发凸显其重要性。在电子设备的设计、生产和应用过程中,电磁干扰不仅会影响设备的正常运行,还可能对周围环境和其他设备造成不良影响。因此,深入了解EMI电磁干扰的传播过程,对于预...

关键字: 电磁干扰 电子设备 EMI

电子设备在各行各业中得到广泛应用。然而,随着电子设备密度的增加和工作频率的提高,电磁干扰问题日益凸显。

关键字: 电磁干扰 EMI 电磁兼容

美国的电磁干扰标准是FCC,CISPR-22与FCC有所不同,但一般来说如果电源符合CISPR-22标准,那么它也符合FCC标准。

关键字: EMI 电磁干扰 电力电子

世界上只有两种电子工程师:经历过电磁干扰的和没有经历过电磁干扰的。伴随着PCB信号频率的提升,电磁兼容设计是我们电子工程师不得不考虑的问题。

关键字: EMC PCB布局 电磁干扰
关闭
关闭