当前位置:首页 > 公众号精选 > 嵌入式客栈
[导读]目录bootloader跳转到操作系统操作系统跳转到应用程序应用程序调用操作系统中的函数不论是在x86平台上,还是在嵌入式平台上,系统的启动一般都经历了bootloader到操作系统,再到应用程序,这样的三级跳过程。每一个相互交接的过程,都是我们学习的重点。这篇文章,我们仍然以x...

目录


  • bootloader 跳转到操作系统


  • 操作系统跳转到应用程序


  • 应用程序调用操作系统中的函数


不论是在x86平台上,还是在嵌入式平台上,系统的启动一般都经历了 bootloader操作系统,再到应用程序,这样的三级跳过程。


每一个相互交接的过程,都是我们学习的重点。


这篇文章,我们仍然以x86平台为例,一起来看一下:从上电之后,系统是如何一步一步的进入应用程序的入口地址


bootloader跳转到操作系统

在上一篇文章中,讨论了bootloader在进入保护模式之后,在地址0x0001_0000处创建了全局描述符表(GDT),表中创建了3个段描述符:


只要在GDT中创建了这3个描述符,然后把GDT的地址(eg: 0x0001_0000)设置到GDTR寄存器中,此时就可以进入保护模式工作了(设置CR0寄存器的bit0为1)。


之前的第6篇文章中Linux从头学06:16张结构图,彻底理解【代码重定位】的底层原理,我们是假设bootloader把操作系统程序读取到内存0x0002_0000的位置,这里继续使用这个示例:


关于文件头header的内容,与实模式下是不同的。


在实模式下,header的布局如下图:


bootloader在把操作系统,从硬盘加载到内存中之后,从header中取得3个段的汇编地址(即:段的开始地址相对于文件开始的偏移量),然后计算得到段的基地址,最后把段基地址写回到header的这3个段地址空间中。


这样的话,操作系统开始执行时,就可以从header中准确的获取到每一个段的基地址了,然后就可以设置相应的段寄存器,进入正确的执行上下文了。


那么在保护模式下呢,操作系统需要的就不是段的基地址了,而是要获取到每一个段的描述符才行。


很显然,需要借助bootloader才可以完成这个目标,也就是:


  1. 在 GDT 中为操作系统程序中的三个段,建立相应的描述符;


  2. 把每一个段的描述符索引号,写回到操作系统程序的 header 中;


注意:


这里描述的仅仅是一个可能的过程,主要用来理解原理。


有些系统可以用不同的实现方式,例如:在进入操作系统之后,在另外一个位置存放GDT,并重新创建其中的段描述符。


操作系统的 header 布局

既然header需要作为媒介,来接收bootloader往其中写入段索引号,所以bootloader与OS就要协商好,写在什么位置?


可以按照之前的方式,直接覆写在每个段的汇编地址位置,也可以写在其他的位置,例如:


其中,最后的3个位置可以用来接收操作系统的三个段索引号。


建立操作系统的三个段描述符

bootloader把OS加载到内存中之后,会解析OS的header中数据,得到每个段的基地址以及界限


虽然header中没有明确的记录每个段的界限,可以根据下一个段的开始地址,来计算得到上一个段的长度。


我们可以联想一下:


现代Linux系统中ELF文件的格式,在文件头部中记录了每一个段的长度,具体解析请参考这篇文章:Linux系统中编译、链接的基石-ELF文件:扒开它的层层外衣,从字节码的粒度来探索。


此时,bootloader就可以利用这几个信息:段基地址、界限、类型以及其他属性,来构造出相应的段描述符了(下图橙色部分):


PS:这里的示例只为操作系统创建了 3 个段描述符,实际情况也许有更多的段。


OS段描述符建立之后,bootloader再把这3个段描述符在GDT中的索引号,填写到OS的header中相应的位置:


上图中,“入口地址”下面的那个4,本质上是不需要的,加上更有好处,好处如下:


当从bootloader跳入到操作系统的入口地址时,需要告诉处理器两件事情:


  1. 代码段的索引号;


  2. 代码的入口地址;


因此,把入口地址和索引号放在一起,有助于bootloader直接使用跳转语句,进入到OS的start标记处开始执行。


操作系统跳转到应用程序

从现代操作系统来看,这个标题是有错误的:


操作系统是应用程序的下层支撑,相当于是应用程序的runtime,怎么能叫做跳转到应用程序呢?


其实我想表达的意思是:操作系统是如何加载、执行一个应用程序的。


既然是保护模式,那么操作系统就承担起重要的职责:保护系统不会受到每一个应用程序的恶意破坏!


因此,操作系统:把应用程序从硬盘上复制到内存中之后,跳入应用程序的第一条指令之前,需要为应用程序分配好内存资源:


  1. 代码段的基地址、界限、类型和权限等信息;


  2. 数据段的基地址、界限、类型和权限等信息;


  3. 栈段的基地址、界限、类型和权限等信息;


以上这些信息,都以段描述符的形式,创建在GDT中。


PS: 在现代操作系统中,应用程序都会有一个自己私有的局部描述符表 LDT,专门存储应用程序自己的段描述符。


还记得之前讨论过的下面这张图吗?


段寄存器的bit2位TI标志,就说明了需要到GDT中查找段描述符?还是到LDT中去查找?


为了方便起见,我们就把所有的段描述符都放在GDT中。


就犹如bootloader为OS创建段描述符一样,OS也以同样的步骤为应用程序来创建每一个段描述符。


此时的GDT就是下面这样:


从这张图中已经可以看出一个问题了:


如果所有应用程序的段描述符都放在全局的GDT中,当应用程序结束之后,还得去更新GDT,势必给操作系统的代码带来很多麻烦。


因此,更合理的方式应该是放在应用程序私有的LDT中,这个问题,以后还会进一步讨论到。


不管怎样,OS 启动应用程序的整体流程如下:


  1. 操作系统把应用程序读取到内存中的某个空闲位置;


  2. 操作系统分析应用程序 header 部分的信息;


  3. 操作系统为应用程序创建每一个段描述符,并且把索引号写回到 header 中;


  4. 跳转到应用程序的入口地址,应用程序从 header 中获取到每个段索引号,设置好自己的执行上下文(即:设置好各种寄存器);


应用程序调用操作系统函数

这里的函数可以理解成系统调用,也就是操作系统为所有的应用程序提供的公共函数。


在Linux系统中,系统调用是通过中断来实现的,在中断处理器程序中,再通过一个寄存器来标识:当前应用程序想调用哪一个系统函数,也就是说:每一个系统函数都有一个固定的数字编号


再回到我们当前讨论的x86处理器中,操作系统提供系统函数的最简单的方法就是:


把所有的系统函数都放在一个单独的代码段中,把这个段的索引号以及每一个系统函数的偏移地址告诉应用程序。


这样的话,应用程序就可以通过这2个信息调用到系统函数了。


假如:有2个系统函数os_func1和os_func2,放在一个独立的段中:


既然OS中多了一个代码段,那么bootloader就需要帮助它在GDT中多创建一个段描述符:


在应用程序的header中,预留一个足够大的空间来存放每一个系统函数的跳转信息(系统函数的段索引号和函数的偏移地址):


应用程序有了这个信息之后,当需要调用os_func1时,就直接跳转到相应的 段索引号:函数偏移地址,就可以调用到这个系统函数了。


这里同样的会引出2个问题:


  1. 如果操作系统提供的系统函数很多,应用程序也很多,那么操作系统在加载每一个应用程序时,岂不是要忙死了?而且应用程序也不知道应该保留多大的空间来存放这些系统函数的跳转信息;


  2. 在执行系统函数时,此时代码段、数据段都是属于操作系统的势力范围,但是栈基址和栈顶指针使用的仍然是应用程序拥有的栈,这样合理吗?


对于第一个问题,所以Linux中通过中断,提供一个统一的调用入口地址,然后通过一个寄存器来区分是哪一个函数。


对于第二个问题,Linux在加载每一个应用程序时,会在内核中建立与该应用程序相关的数据结构,并且在内核中创建一块内存空间,专门用作:从这个应用程序跳转到内核中执行代码时,所使用的栈空间。


------ End ------
从bootloader到操作系统,再到应用程序,这个三级跳的最简流程就讨论结束了。


—— The End —



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

C语言是一种广泛应用于软件开发领域的编程语言。它是由贝尔实验室的Dennis Ritchie在20世纪70年代初创建的,旨在为UNIX操作系统的开发提供一种高级编程语言。C语言具有简洁、高效、可移植性强等特点,因此成为了...

关键字: C语言 操作系统 应用程序

洛杉矶、马德里和墨西哥城2023年8月30日 /美通社/ -- 如今,父母和看护者越来越担心孩子们的屏幕暴露和屏幕互动。 为指导父母为家人做出理想的屏幕时间决策,排名第一的儿...

关键字: LINGO BSP 应用程序 COM

瓦努阿图维拉港2023年8月28日 /美通社/ -- Vantage(或"Vantage Markets")欣然宣布在Vantage应用程序上推...

关键字: GE AN 信号 应用程序

(全球TMT2023年8月14日讯)亚马逊云科技日前宣布在以色列(特拉维夫)推出亚马逊云科技基础设施区域。亚马逊云科技的区域由一个地理区域内的多个相互独立、且在物理上分隔的可用区组成。亚马逊云科技以色列(特拉维夫)区域...

关键字: 亚马逊 应用程序 开发者 数据中心

北京——2023年8月14日 亚马逊云科技日前宣布在以色列(特拉维夫)推出亚马逊云科技基础设施区域。新的亚马逊云科技区域将为开发者、初创公司、创业人士和企业,以及政府机构、教育和非营利组织提供更多运行其应用程序的选择,他...

关键字: 亚马逊 应用程序 云技术

据业内消息,近日国家工信部印发了《工业和信息化部关于开展移动互联网应用程序备案工作的通知》,并表示在广泛征集APP主办者等互联网信息服务提供者、网络接入服务提供者、应用分发平台、智能终端生产企业等各方意见的基础上,组织开...

关键字: 工信部 应用程序 App 小程序

Amazon Entity Resolution利用机器学习帮助企业匹配和连接存储在多个应用程序、渠道和数据存储系统中的记录 ActionIQ、Amazon Ads、Best Western、LiveRamp、...

关键字: RESOLUTION 亚马逊 机器学习 应用程序

提供单一窗口、端到端解决方案,实现按需、实时、可靠和可扩展的多云连接;为下一代全球企业带来快速、无缝、智能的连接 印度孟买2023年8月4日 /美通社/ -- 全球数字生态系统推动者Tata Communication...

关键字: COMMUNICATIONS MULTI NEC 应用程序

移位寄存器有不同的版本,可用于各种各样的应用程序。本文将向您介绍移位寄存器并说明它们的工作原理。此外,它还将解释如何将它们用于将多条并行数据线转换为单个串行连接。

关键字: 移位寄存器 串行 应用程序

Telkomsel 是印度尼西亚运营商的领先者,拥有 1.7 亿用户,在使用了 SoftAtHome 的"Eyes'ON"解决方案之后,其用户的移动体验与服务质量都得到了...

关键字: TE SE BSP 应用程序
关闭
关闭