当前位置:首页 > 技术学院 > 电子技术资源
[导读]在强噪声背景下,针对微弱信号的检测和提取困难的问题,在经典的双稳态系统模型基础上,结合Caussian Potential模型提出了一种新的组合型幂指函数的三稳态系统模型。

随机共振是一种利用噪声使微弱信号得到增强传输的非线性现象,与线性方法相比能够检测更低信噪比的信号。本文以非线性双稳系统为研究对象,以强噪声背景下微弱信号检测的实际需要为出发点,在综合了前人对随机共振研究的基础上,系统地研究了双稳随机共振系统与信号、噪声之间的关系。深入细致地研究了小参数条件下的随机共振现象,从频域结构分析了随机共振产生的机制。探讨了随机共振理论在微弱信号检测中的应用研究。主要工作如下:

(1)介绍了随机共振理论研究的历史、现状和发展,简述了微弱信号检测的特点和现有方法,深入探讨了基于随机共振的微弱信号检测方法的特点,明确了采用随机共振方法检测微弱信号需要解决的主要问题。

(2)简要介绍了双稳态系统的非线性朗之万方程和福克一普朗克方程,通过对朗之万方程的随机共振特性分析,为研究非线性系统的随机共振效应奠定基础,详细介绍了判断非线性系统是否进入随机共振状态的重要指标—信噪比。

(3)深入研究了非线性系统的随机共振效应,详细研究了系统结构参数、势垒和随机共振的关系,深入分析了随机共振系统与信号、噪声的非线性关系,以及产生随机共振的系统条件,详细分析了b=1时,随机共振系统与最佳a值的关系。

(4)深入细致地研究了小参数条件下,输入信号、噪声和双稳系统三者协调作用产生的随机共振,从频域结构分析了随机共振产生的机制。随机共振对输入信号的频率很敏感,增大输入信号幅度或适当减小系统参数有助于随机共振的产生。

(5)探讨了利用随机共振技术解决应用中遇到的噪声背景下微弱信号检测的问题,根据小参数信号随机共振的原理,采用变尺度随机共振的思想,在大参数条件下,可能产生(类)随机共振,即在信号频率处产生可识别的随机共振谱峰。

(6)利用随机共振技术进行微弱信号检测,计算机仿真表明,在强噪声背景下,可以有效地检测出微弱正弦信号,且检测信噪比可达到-15dB以下,全面深入研究了一维双稳Langevin系统和二维双稳Dufing系统的随机共振现象及其产生的条件,并比较分析了两种系统的微弱信号检测性能,探讨了随机共振的应用研究。


随机共振微弱信号检测

在强噪声背景下,针对微弱信号的检测和提取困难的问题,在经典的双稳态系统模型基础上,结合Caussian Potential模型提出了一种新的组合型幂指函数的三稳态系统模型。首先,构造组合型幂指函数的三稳态系统模型,通过调节系统参数进行数值仿真,验证新型的三稳态系统模型能够产生随机共振现象;其次,以输出的平均信噪比( SNR)作为测度指标,结合人工鱼群智能算法进行相应参数寻优,使得组合型幂指函数的三稳态系统输出信噪比最大,从而达到随机共振现象。轴承故障诊断实验分析中,在输入信噪比为- 25.8 dB条件下,分别通过双稳态系统和组合型幂指函数的三稳态系统得到的输出信噪比分别为- 13.1 dB和-8. 59 dB,说明组合型幂指函数三稳态系统性能优于双稳态系统性能。


随机共振微弱信号检测

微弱信号检测应用范围广泛涉及到光学、电磁学、数理学、物理力学、地质学、材料学等学科,因此微弱信号检测成为当前研究的热点。微弱信号检测技术是用来检测噪声淹没下的有用信号,一般采用抑制噪声技术来提高信噪比( Signal-to-Noise RaTIo,SNR),常规方法有时频分析、经验模态分解法小波变换等,这些方法在降噪的同时会使得有用信号受损。针对这个问题,本文采用随机共振方法,使噪声的能量向检测频率附近处发生转移,这种能量转移现象属于非线性系统中的一种动力学现象,因此构造不同的非线性系统模型,使得微弱信号的检测性能也不同。1981年Benzi等。首次提出“随机共振”(StochasTIc Resonance.SR)的概念。目前随机共振理论已成为非线性科学领域的一个热点课题。随机共振现象是一种力学现象,它表征着驱动周期、噪声、系统参数三者能够达到协同效应。使得噪声的能量根据洛伦茨分布逐步向低频有用信号转移,从而提高系统输出信噪比,有效提高微弱信号检测性能。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭