当前位置:首页 > 消费电子 > 消费电子
[导读]0 引言现行的采用PWM 方式对异步电动机进行VVVF调速的技术,由于采用可关断电力电子器件与反馈整流器件及其较复杂的控制环节,使调速装置的造价较高。再则,现有的变频技术

0 引言

现行的采用PWM 方式对异步电动机进行VVVF调速的技术,由于采用可关断电力电子器件与反馈整流器件及其较复杂的控制环节,使调速装置的造价较高。再则,现有的变频技术对异步电动机的无功电流缺乏克制办法,几乎是惯例性的用反馈二极管进行回馈,因而在较低的功率因数下产生电能损耗。在转子回路中串入附加电势而改变其理想空载转速的串级调速技术,也存在最大转矩下降和功率因数较低等问题。对于同轴传动的两台绕线式异步电动机如何进行简易的调速,本文提出一种组合移相调速的观点并对此进行初浅的讨论。

1 双电机移相调速的思路

异步电动机的旋转磁场将定子的电磁功率传输给转子,传输效率在主磁通椎m为常量时较高。所谓的理想空载转速实质上是电磁功率与电磁转矩之比,并随转子合成电势量的改变而变化,进而在转子电动势这个物理量的改变中使其转速变化。据此,我们设法对转子电动势采用间接控制的办法,应用一种“曲折移相调速”技术将异步电动机改变为双定子的结构,或将两台绕线式异步电机同轴组合为一体,具体用调节两只定子绕组电势相量的电势合成原理对两台电机进行联动调速。因为分成双定子铁心及绕组,其中之一的副绕组要相对主绕组进行幅值恒定而相位变化的移相控制,考虑到移相控制中可用电容器简化变流电路结构而提高功率因数,运用了“组合移相调速”技术。

这种通过改变两只定子绕组相对的电势相量而间接控制串联为一体的转子电势的调速方法,一方面是基于用普通晶闸管构成变流装置而降低造价;另一方面是基于用电容器进行变流而提高功率因数及获得综合的节电效果。

2 组合移相调速电路的结构及控制方式

在将两台同型号及同功率的绕组转子异步电动机的输出轴直接相联或间接相联时,主电机的三相转子绕组Wa1、Wb1、Wc1 与副电机的三相转子绕组Wa2、Wb2、Wc2,经分别的滑环及碳刷并用三根导线以相同的电势相位方式连接成回路,如图1所示。主电机的三相定子绕组WA1、WB1及WC1连接成三角形或星形接线,并经三相交流开关K1连接于三相工频电源的A、B、C三端。副电机的定子绕组与其组合变流装置的接线方式是:三相定子绕组WA2、WB2、WC2连接成其中性端为E0 的星形接线;采用普通整流管D1~D6连接成三相桥式整流电路,三个输入端经交流开关K2连接于三相工频电源的A、B、C端,直流输出端E1与E2两端连接两只滤波电容器C01与C02;采用普通晶闸管T1~T6连接成三相桥式逆变器,三个交流端分别经串联的换流电容器C1、C2、C3与三相星形接线的定子绕组连接,并将绕组的中性端与两只滤波电容器之间的E0端连接。

三相逆变桥的控制及通流顺序为:6只晶闸管按照T1—T2—T3—T4—T5—T6 的顺序依次并循环地进行触发导通,并按照分别导通120~180°的电角度而进行六节拍的换流。

3 只换流电容器C1、C2、C3利用连接的感性绕组起到吸收并释放电磁能量的作用,在逆变桥以正向或以反向的通流顺序中,形成正、负幅值相等并间隔一定时间的交流电压量。例如,晶闸管T1的触发导通使储存电荷的电容器C1 的电压从幅值减小至零并反向充电,绕组WA2中的电流从零逐渐上升至幅值,再逐渐下降至零,并使晶闸管T1在电流过零时自行关断;间隔一定时间触发晶闸管T4导通时,换流电容C1 反向储存的电荷经由滤波电容器C02 与绕组WA2形成反方向的放电回路,使电机绕组流过与其幅值相等的负向脉波电流。在6 只晶闸管循环地触发导通时,三相定子绕组随其形成相位可转移的旋转磁场,并同相对地经交流开关K1接通于三相电源的另一台电机的三相绕组以磁场相量合成的方式共同经气隙磁场作用于串联的两只转子绕组。

3 移相变流的调速原理

因为异步电动机的转矩与转子电流成正比,其组合的转子回路的电流数值又取决于合成电势相量的数值及转差率,因此采用转移两只定子绕组的电势相位角的方式来间接改变组合转子绕组合成的电势相量。同轴连接的转子转速变化的特点是:在三相定子绕组WA2、WB2、WC2的感应电势相量相对另一台电机的三相定子绕组WA1、WB1、WC1的电势相量分别一致时,其转速稳定运行于额定转速;在定子绕组的电势相量的相角差向180°变化时,其转速将趋近于零。因为转子绕组的电势相量依赖于对应定子绕组的电势相量,因此,在调速控制中仅须对定子绕组进行相应的电势相量的相位转移而无须变动频率。在两只绕线式转子的三相绕组串联连接时,运转中的转子相电流的方程式为

 

 

 

 

 

 

在6 只晶闸管依次相差0.02/6 s的触发导通顺序中,副电机的定子绕组的感应电势相量受旋转磁场的主导作用仍是正弦波形,换流电容器与整流器叠加的脉冲电压量主要作用于定子绕组的漏抗X1上。在选择400~500 V的电力电容器作为换流电容器,并在其容量与电机输入功率接近于相等时,可使系统的功率因数接近于1.0。定子绕组的漏抗X1受换流电容器的充放电作用,也使其影响输出转矩的降压作用基本消除。

4 移相变流电路的参数选择及功率传输的分析

在定子绕组WA2、WB2、WC2 与转子绕组Wa2、Wb2、Wc2用等值电路表示其参数,按额定转速及额定负载将电机的每相电路折算为R 与L 的串联支路,用EC表示换流电容器交流电压的幅值,并用E01表示滤波电容器的直流电压,经拉氏变换及运算可写出回路的动态电流为

 

 

这是衰减振荡曲线,其第一个波形近似为正弦波。

经小型试验发现,换流电容器的交流电压的幅值接近于逆变器直流侧的电压值。因此,可先选择在每只换流电容器的容量值、电机输入的每相功率值相等时开始进行调试,之后再根据实际的变化情况进行修正。对三相低压整流器的整流管与逆变器的晶闸管的电压值,可选择为1 000~1 500 V,其额定电流按2~3倍的电机铭牌电流值选取。逆变器的触发控制回路基本类似于普通的三相可控整流器的常规回路,但须配置在某一换流过程中要可靠地关断相应的晶闸管后才允许触发同一桥路的另一只晶闸管的联锁环节。

移相变流电路从改变串联转子的电势值而改变转速这一点来看,与低同步串级调速的原理有一定的相似之处,但是移相变流电路不必用电力电子器件回馈转差功率。因为在两只转子绕组的感应电势相对曲折转移至某一琢角时,对应的两只定子绕组的电势相量势必分别发生相位角为琢/2 的转移,使经由气隙磁场的对定子绕组的去磁作用处在磁势平衡的关系中,而使定子绕组电流增大的比例随琢相角的增大而减小。由于两台电机的气隙磁通椎m保持恒定,因此两个转子合成的电势量与理想空载转速成正比关系。在电势量随移相角增大而变小时,理想空载转速也随着下降,并使得两台电机输入的电磁功率对应降低。

5 结语

在两台绕线式异步电动机同轴连接或将其定子铁心及绕组分隔成独立磁路的结构时,利用双定子绕组的磁场相量的合成作用可使转子电势及其转矩变化。采用串联电容器及普通晶闸管的组合变流方式,不仅使其调速性能在平滑调节的过程中可实现零速至额定转速的全范围调速,还具有变流装置的结构简单、造价低、功率因数较高和可靠性高的优点。本文提出的双定子结构及变换两只定子绕组的电势相量而进行相量合成的调速方法,其实质是通过改变电磁功率进而改变其理想空载转速,从而以简易的电路结构和较高的节能效果实现了对组合异步电动机的调速。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在这篇文章中,小编将对无功功率的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: 功率 无功功率

功率器件是一种专门用于控制、调节和放大电能的电子元件,主要用于处理大功率电信号或驱动高功率负载,如电机、变压器、照明设备等。

关键字: 功率器件 控制 放大电能

PD3.0快充协议最高支持100W的充电功率。PD3.0协议支持多种电压输出,包括5V3A、9V3A、12V3A、15V3A和20V5A,从而使得最大功率可以达到100W。

关键字: pd3.0 快充协议 功率

在这篇文章中,小编将对功率因数的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: 功率 功率因数

在这篇文章中,小编将对功率因数的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: 功率 功率因数

检查电源标识上的规格,上面通常会注明电源的最大输出功率。例如,如果标称输出功率为500W,实际输出功率可能在400W至450W之间。

关键字: 开关电源 输出功率 功率

机器人是一种集成了机械、电子、控制、传感、人工智能等多学科先进技术的自动化装备,能够模仿或替代人类进行各种任务的设备。

关键字: 人工智能 电子 控制

三相电机是一种常见的电机类型,广泛应用于工业和家庭领域。在三相电机中,功率是一个非常重要的参数,它直接关系到电机的运行性能和效率。因此,正确地计算三相电机的功率对于电机的设计、选型和使用都具有重要的意义。本文将详细介绍三...

关键字: 三相电机 功率 参数

为增进大家对升功率的认识,本文将对升功率、升功率的提高措施予以详细介绍。

关键字: 功率 指数 升功率

伺服电机是一种高精度、高性能的电机,广泛应用于各种自动化控制系统中。控制伺服电机是实现自动化控制的关键环节,不同的控制方式具有不同的特点和适用场景。本文将介绍几种常见的伺服电机控制方式及其特点,并分析在实际应用中应注意的...

关键字: 伺服电机 控制 自动化
关闭
关闭