介绍了采用圆柱形等螺距诱导轮设计方法进行轴流叶轮设计的技术路线以及屏蔽泵设计过程中的参数调整方式 。进行了将诱导轮作为屏蔽泵的工作叶轮的生产实践 , 总结和验证了叶片拉伸成型的方法 , 并介绍了工程应用的经验 、效果和要点。
现代配电网不仅结构复杂 , 而且地下电缆和架空线混合 ,故障巡视困难 , 因此迫切需要研究出快速 、准确的单相接地故障定位方法 。鉴于此 ,提出一种基于零序CT载波信号注入的中性点不接地配电网单相接地故障定位方法 , 即对馈线零序电流互感器的二次负载电阻电压通过电子开关进行高频调制 ,所调制的高频载波信号再通过该互感器回馈到一次线路侧 ,经电缆和(或)架空线传输到变电站接收、解调 ,还原出二次负载电阻电压幅值、相位等信息 。现分析该方法的原理和应用 ,并通过仿真验证其正确性和可行性:该方法能够快速获得线路零序电流的分布信息 ,并据此对接地故障点进行准确定位。
风电出力和水电出力在时间上具有互补特性 , 两者进行联合调度是提升风电和水电并网可靠性与经济性的重要途径。自然风的波动性和随机性使得风电实际出力与预测出力存在偏差 ,导致了不平衡能量的产生。鉴于此 ,采用场景和概率模拟风电输出的不确定性 , 对水电机组性能曲线进行线性化处理;在此基础上 ,基于 日前能量市场和辅助服务市场 ,建立了风电独立、梯级水电独立以及风水联合经济调度的混合整数线性规划模型。算例仿真结果表明 ,机组出力与市场电价息息相关 ,考虑辅助服务市场的风水联合经济调度可有效提高发电系统整体收益 ,减轻风电不确定性带来的影响。
高精度提升机构核心驱动能力来源于4个伺服电机 ,该机构具备运行过程定位精度高 、控制方式多样 、控制响应快等特点。对提升机构控制进行分析 ,该机构运动控制较为复杂 ,控制系统应具备运动控制算法库、位置调节PID专用库、总线协议等能力。在对提升机构控制方案设计过程中 , 重点研究了PID控制算法和伺服运动控制算法。依据分析研究对提升机构进行控制方案设计 ,该控制方案组成包括PID控制算法、伺服运动算法、CANopen冗余、CPU冗余等 。通过对高精度提升机构的调试和使用 ,得出国产PLC产品可以满足高精度运动机构控制需求的结论 。该方案可以为提升机构、顶升机构等的运动控制方案设计提供技术参考。
由于新能源发电装机规模不断扩大 , 常规火电机组负荷大幅波动 ,长时间深度调峰 ,启、停调峰频繁成为常态 ,加上大量掺烧高硫煤等 ,造成大容量、高参数锅炉水冷壁因高温腐蚀、横向裂纹产生的缺陷逐渐增加 。鉴于此 ,就某电厂1 000 MW锅炉水冷壁横向裂纹泄漏进行深入分析和总结 ,可为同类型锅炉检修维护和运行调整提供一定的参考。
采集终端的停上电事件直接关系到用电信息的采集质量 , 因此采集终端停上电事件上报的准确率一直是国家电网以及各地市供电局重点考核的指标。现有的一些上报采集终端停上电事件的方法只是对采集终端的交采电压进行一次检测 ,若交采电压低于设定的阈值则认为是发生了停电事件。此类方法较好地实现了智能化检测采集终端停上电事件的功能 ,但采集终端的应用场景较为复杂 ,实际应用中会存在假停电的情况 ,现有的方法无法较好地处理假停电的情况。针对这一问题 ,在传统的方法上进行了改进 ,提出了一种精确上报采集终端停上电事件的方法。
压力传感器是将压力按照一定规律转换为电信号输出的传感器 ,其使用需求主要集中于稳定性 、可靠性和环境适应性三个方面 。膜片焊接是压力传感器封装的关键和基础工艺 , 也是压力传感器制造的重要过程 , 改善膜片的焊接质量可提高压力传感器的性能 ,满足用户更高的产品性能指标需求 ,从而增加压力传感器的市场应用。合理的焊接工艺有利于膜片焊接 , 能够提高压力传感器的封装合格率 , 鉴于此 , 通过对不同焊接工艺 、焊接材料 、焊接参数等的对比试验 ,制定膜片焊接工艺合理的焊接方法 ,进一步提高压力传感器膜片的焊接质量和焊接能力 ,从而提升压力传感器的合格率 ,达到优选压力传感器焊接工艺的目的。
随着机车运营里程的增加 ,机车制动夹钳的检修市场不断扩大 ,更多相关企业开始着手机车制动夹钳检修业务策划 。因产品的检修与新造的工艺过程存在较大差异 ,找到更加合理的检修工艺模式成为关键。现基于流水线的思维进行讨论研究 ,通过检修流程分析建立了“三线(实体线 、物流线 、信息线)一体 ”的标准模型 ,提炼出了模块化 、标准化 、信息化 、集成化的机车制动夹钳检修工艺模式构建路径。
压缩空气是轨道交通车辆的重要动力源和传输媒介之一 ,压缩空气质量的优劣不仅影响用风设备的使用寿命 , 也影响行车安全。为及时发现压缩空气质量是否超标 ,研发了一种集成多功能的便携式压缩空气质量检测设备 , 可以同时对轨道车辆中压缩空气的水、油和固体颗粒进行在线检测 ,从而及时发现隐患并进行处理 ,减少压缩空气质量超标带来的影响 ,延长用风设备的使用寿命 ,提高轨道车辆运行的安全性。