当前位置:首页 > 电源 > 电源DC/DC
[导读]摘要:介绍了一种新型无损箝位电路在单端正激电源中的应用, 详细分析了工作原理,并给出了实验结果。 叙词:无损箝位 Abstract:Application of a new lossless clamp circuit for single ended forward converter i

摘要:介绍了一种新型无损箝位电路在单端正激电源中的应用, 详细分析了工作原理,并给出了实验结果。 叙词:无损箝位 Abstract:Application of a new lossless clamp circuit for single ended forward converter is introduced, the operation principle of this circuit is analysed in detail,and the experiment result is also given. Keyword:lossless clamp
1 引 言

  在各种隔离式DC/DC变换器中,单端正激式变换器是其中最简单且适合大电流输出的一类,因而正激式变换成为低压大电流功率变换器的首选拓扑结构。但因其高频开关变压器磁通工作在磁滞回线的一侧,必须进行磁复位,以确保励磁磁通在每一个开关周期开始时处于初始值。同时由于工作在高频状态下,开关变压器漏感、分布电容等寄生参数的影响不能忽略,在开关转换瞬时,电抗元件的能量充放致使功率器件承受很大的热和电应力,并可导致开关管的电压过冲,这不仅意味着设计人员必须选用昂贵的高耐压功率开关管,同时也给电源的可靠性带来潜在威胁。为此常常还需设置各种缓冲吸收电路,但这降低了变换器的工作效率。

  为了解决单端正激式开关电源中的磁复位与漏感储能问题,传统的解决方案有以下几种:

  (1)、采用辅助绕组复位电路;
  (2)、采用RCD箝位复位电路;
  (3)、采用有源箝位复位电路。

  其中方案1要求辅助绕组与初级绕组必须紧耦合,实际上因漏感的存在电路中仍需外加有损吸收网络,以释放其储能;方案2是一种有损复位箝位方式,因其损耗的大小正比于电路的开关频率,(和方案1中外加有损吸收网络一样)这不仅降低了电源本身的效率,也限制了电源设计频率的提高;方案3中需要附加一复位开关管与相关控制电路,增加了电路复杂性的同时,也带来了附加电路损耗与总成本的上升。

  本文介绍一种新型无损箝位电路,无须额外附加辅助开关管,电路简单,可有效降低功率管的电压应力,箝位效果优异,且有利于电源工作效率的提高。

2 工作原理

  新型无损箝位电路(图1)与上述方案1(图2)中采用辅助绕组的传统方法相类似,不同之处是增加一个箝位电容C2,但功率主回路上无需外加有损吸收网络。传统的方法是在变压器中附加一个去磁绕组N3,它与二极管D3串联后接到电源输入正极,N3起到去磁复位作用,功率管S漏源间并联的RC网络,用于吸收变压器的初级漏感储能,防止产生过电压尖峰,保护功率管S免被击穿,见图2所示。图1中的箝位电路由辅助箝位绕组N3、箝位二极管D3、箝位电容C2组成。辅助箝位绕组N3的与初级绕组N1相同,目的是为了实现当功率开关管S漏源间电压VS上升到2VI时,加在初级绕组N1上的电压等于VI,因N1、N3匝数相等,箝位绕组N3的电压也必然是VI,此时D3恰好正偏导通。

600)this.width=600" border="0" />
  下面结合图1与图3具体分析新型无损箝位电路的工作原理。

  1) T0时刻为初始状态,设功率开关管S处于关断状态,此时(B点电压)VS等于VI,箝位电容C2通过初级绕组N1、箝位绕组N3被充电至VI,电容极性为左负右正。

  2)在T1~T2期间,功率管S导通,由于箝位绕组与初级绕组电压相同,参照图1所示的同名端可知,VA为-VI,二极管D3反向偏置截止。在此期间,变换器实现功率的变换,能量从初级传到次级。

  3)在T2时刻,功率管S关断,变压器中的漏感与磁化储能给功率管等寄生分布电容充电,(B点电压)VS最终上升到2VI,A点电位也从- VI 上升为+VI ,若此时B点电位进一步上升,二极管D3将正向偏置导通,功率管S漏源间的电压VS通过电容C2和二极管D3得到有效箝位。

  4)在T2~T3期间,反射在初级的负载电流Io下降,其下降的速率由初级与次级间的漏感决定,该电流通过箝位电容C2、箝位二极管D3回流至电源,流过电容C2的电流引起其端电压上升(设其增量为dVS),导致B点电位变化为2VI+dVS。

  5)在T3时刻,由于出现输出二极管D1的反向恢复,反射到的初级电流Io出现负值,箝位二极管D3停止导通,因功率管S的漏源间存在输出电容Cp,(B点电位)VS出现下降直到输出二极管D1反向反射电流小于初级磁化电流并在T4时刻等于零为止。

  6)在T4~T5期间,正在减少的正向磁化电流将引起B点电位VS再次向2VI上升,直到箝位二极管D3再导通,将VS箝位在比2VI稍高的电位上。[!--empirenews.page--]

  7)在T5时刻,初级磁化电流减为零,箝位电容C2通过初级绕组N1、箝位绕组N3向电源VI放电,回送电容储能,VS跌至VI。

  8)下一时刻重复以上过程。

600)this.width=600" border="0" />
3 关键电路参数设计
  (1)箝位电容计算

  从上文分析可知,箝位电容C2的取值决定了功率管漏源间电压VS超出VI值的多少,超出的电压dVS近似计算方法见式 (1):
          
      dVS =0.5(Io/Nps)(T2-T3)/C   (1)
          
  式中 Nps是初次级匝比,Io是负载电流。

  因VS的上升时间与T2-T3间隔相比甚小,可忽略不计,故
          
   dT= T2-T3=LS(Io/ Nps)/VI   (2)
  
  式中是LS相对于初级绕组的初次级间漏感 

  联解(1)、(2)式可得:

  dVS =0.5(Io/Nps)(LS Io/Nps)/(VI×C)
          =0.5LS(Io/Nps)2/(VI×C)    (3)

  (2)箝位二极管设计选择

  二极管D3的峰值电流定额必须大于Io/Nps,同时其平均电流定额IAV至少必须等于:

   IAV=0.5(Io/Nps)(dT/T)    (4)

式中T是开关周期

  二极管的电压定额必须超过2VI

  (3)箝位绕组匝数计算

  绕组匝数N3越多,电源允许的最大占空比越小,功率开关管S上的电压应力越低,但占空比小,开关变压器的利用率低。综合考虑最大占空比和开关管的电压应力,一般选择箝位绕组匝数和初级绕组匝数相同,即

       N3=N1     (5)
4 应用实例

  设计了一应用于输入为220Vac(187Vac~242Vac)、输出为20V/8A的正激变换高频开关电源,工作频率是200kHz,最大占空比为0.45,采用新型无损箝位电路,铜线的趋肤深度为Δ=0.148mm。按照上述设计方法,设计的电源变压器有关参数如下:

  磁芯规格ETD34,磁芯材料为3F3, Philips;

  初级绕组28匝;复位绕组28匝;次级绕组9匝。

  设计出的变压器的初级励磁电感值实测为Lm=748.40μH,次级电感值实测为Ls=64.7μH,初级漏感电感值实测约为63μH,箝位电容C=4700Pf,箝位二极管选用MUR4100。

  利用示波器测试其在输入220VAC、输出20V/8A条件下,功率开关管漏源极电压波形如下图4所示,测试结果表明过压尖峰得到了有效抑制,实现了无源无损箝位的目的。

600)this.width=600" border="0" />
5 结 语

  本文介绍了一种无损箝位电路在单端正激电源中的应用,着重分析了工作原理,并给出关键电路参数的设计。用一种峰值电流模式控制芯片UC1825设计的某型电源,已配套应用于军用、民用产品,取得了良好的性能。实验结果表明非常有效地抑制了过压尖峰,实现了无源无损箝位。这种新型电路,拓扑简单可靠,可移植于如单端正激、单端反激、SEPIC、CUK以及ZETA等拓扑电路中,应用前景广阔。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

云顶新耀宣布其合作伙伴Providence Therapeutics Holdings Inc.的mRNA新冠候选疫苗PTX-COVID19-B在评估其安全性、耐受性和免疫原性的II期研究中取得了积极的顶线结果。云顶新耀...

关键字: VI OV IDE CE

当电路中的信号发生突变(特别是数字信号)时,信号经常会出现一个电噪声。这个噪声在一般环境下不会对外产生影响。但是在某些特殊情况下,该信号会对外产生较强的传导干扰,进而影响其他电路的正常工作

关键字: 电路 数字信号 噪声

当汽车进行转弯时,司机打开转向灯,尾灯会根据转向依次被点亮,经过一定的间隔后,再全部被消灭。最后不停地重复,直到司机关闭转向灯。

关键字: 汽车尾灯 电路 转向灯

硬件的学习之路很长,但是会很有意思。同时记住一句话,在实验室里面弄硬件的,第一是保证不短路,第二是保证电容不要炸,同时保证别触电就行,其他别怂。

关键字: 电路 电容 电子电路

(全球TMT2022年10月12日讯)9月9日,国内时尚品牌VICUTU在北京大米视听文化传播有限公司的xR演播室进行了线上2022秋冬xR虚拟时装秀直播。本次时装秀场的LED显示屏完全采用视爵光旭专业xR产品搭建,背...

关键字: 显示屏 VI IC LED显示屏

(全球TMT2022年10月12日讯)作为汽车应用氮化镓(GaN)解决方案的全球领导者,VisIC Technologies LTD公司宣布: Dieter Liesabeths将加入公司,担任产品高级副总裁。Diet...

关键字: SIC VI TE 氮化镓

以色列耐斯兹敖那2022年10月12日 /美通社/ -- 作为汽车应用氮化镓(GaN)解决方案的全球领导者,VisIC Technologies LTD公司很高兴地...

关键字: SIC VI TE TECHNOLOGIES

深圳2022年10月11日 /美通社/ -- 9月9日,国内知名时尚品牌VICUTU在北京大米视听文化传播有限公司的xR演播室进行了线上2022秋冬xR虚拟时装秀直播。通过和罗马尼亚建筑设计师及艺术家Alexandru...

关键字: 显示屏 VI IC MIDDOT

新型抗生素思福妥(ZAVICEFTA,注射用头孢他啶阿维巴坦钠2.5g)获得国家药品监督管理局批准,用于治疗3月龄及以上复杂性腹腔内感染(cIAI)患儿,为cIAI儿童患者提供了一种新的治疗选择。此前,思福妥已于2019...

关键字: AI ICE VI 5G

Levi Strauss & Co发布2022财年第三季度业绩报告,披露主要受直接面向消费者业务的增长以及在美国、亚洲和拉丁美洲的增长推动,在截至2022年8月28日的三个月内,收入同比增长1%至15亿美元(按恒...

关键字: VI ST EV

电源

8428 篇文章

关注

发布文章

编辑精选

技术子站

关闭