当前位置:首页 > 电源 > 电源
[导读]0 引言 在直流变换中不产生电能形式变化,只产生直流电参数的变化。DC/DC变换器具有成本低、重量轻、可靠性高、结构简单等特点,因此,在工业领域和实验室得到了广泛应用。单象限直流电压变换器电路的特点是输

0    引言

    在直流变换中不产生电能形式变化,只产生直流电参数的变化。DC/DC变换器具有成本低、重量轻、可靠性高、结构简单等特点,因此,在工业领域和实验室得到了广泛应用。单象限直流电压变换器电路的特点是输出电压平均值Uo跟随占空比D值而变,但不管D为何值,Uo的极性则始终不变,这对于直流开关稳压电源一类的应用场所是能够满足要求的。但对于直流调速电源,负载为直流电动机时,上述性能便不能满足要求,因而发展了多象限直流电压变换电路。

    双象限电路分为输出电流平均值Io极性可变的电路与输出电压平均值Uo极性可变的电路两类,通常前一种电路称为电流双象限电路,后一种电路称为电压双象限电路。电流双象限电路是指输出电流平均值Io的幅值和极性均随控制信号us而变化,但输出电压平均值Uo的极性却始终为正,即电路可运行于第一和第二象限。电压双象限电路是指输出电压平均值Uo的幅值和极性均随控制信号us而变化,但输出电流平均值Io却始终为正,即电路可运行于第一和第四象限。本文将对电压双象限Buck-Boost电路进行分析。

1    Buck电路

1.1    电路结构

    主电路如图1所示。用电感、内阻和等效电压串联电路表示有源负载,桥的直流输入端并联滤波电容。这是一个全桥电路结构,桥的每臂用全控型器件(S1,S2)和不控型器件(D1,D2)组成。S1及S2的控制采用PWM控制,这样可以调节D值,并且及时检测负载的运行状况,由此控制开关的关断和开通。此电路的元器件、电源、负载均假设为理想的。输出滤波电感足够大,可保证负载电流连续,且线性升降。

1.2    工作原理

1.2.1    运行于第一象限

 这是指输出端电压平均值和电流平均值均为正的工作状态。

(0≤t≤DT)    S1及S2均导通,等效电路如图2(a)所示,输出电压Uo为Ud,输入电流等于输出电流,输出电流线性增长,负载从电源吸取能量。

 (DT≤t≤T)    S1导通,S2断开,D1正偏续流,等效电路如图2(b)所示,由于S1与D1导通,Uo的值为零。


(a)    0≤t≤DT

(b)    DT≤t≤T


输出电压平均值为Uo=DUd

1.2.2    运行于第四象限

    这是指输出端电压平均值为负而电流平均值为正的工作状态。当电路负载为电动机且驱动位能性负载,如卷扬机的提升机构,当放下重物时,电机在重物作用下反转,电枢感应电势反向,电磁转矩成为制动转矩,为了保证安全,必须改变控制信号的极性和幅值,使电路工作于第四象限,将位能经过变换电路反馈到直流电源。具体工作过程如下。

    (DT≤t≤T)    S1及S2均断开,电感端电压反向,D1,D2正偏导通,等效电路如图3(a)所示,输出电压Uo为-Ud,负载反馈能量。

    (0≤t≤DT)    S1断开,S2导通,负载电流由D2换到S2中。等效电路如图3(b)所示,Uo的值为零。

    输出电压平均值为Uo=-DUd 


    由以上分析可知此电路及其控制策略可以实现双象限Buck电路功能。

2    Boost电路

2.1    电路结构

    主电路如图4所示。图中S1,S2,S3为全控型器件,D1及D2为不控型器件。负载依然为有源负载,直流输入端串联电感。S1,S2,S3的控制采用PWM控制,此电路的元器件、电源、负载同样假设为理想的。输出滤波电感足够大,可保证负载电流连续,且线性升降。可以看出,本电路的设计思想也是利用全桥实现双象限运行,其好处在于简单、可靠。


2.2    工作原理

2.2.1    运行于第一象限

    (DT≤t≤T)    S1断开,S2及S3均导通,等效电路如图5(a)所示,电感电压UL=Ud-Uo。

    (0≤t≤DT)    S1,S2,S3均导通,等效电路如图5(b)所示,电感电压UL=Ud。

输出电压平均值为Uo=Ud/(1-D)


2.2.2    运行于第四象限

    (DT≤t≤T)    S1,S2,S3均断开,电感端电压反向,D1及D2正偏导通,等效电路如图6(a)所示,电感电压UL=Ud+Uo。

    (0≤t≤DT)    S1导通,S2及S3均断开,等效电路如图6(b)所示,电感电压UL=Ud。

    输出电压平均值为Uo=-Ud/(1-D)


3    Buck-Boost电路

3.1    电路结构

    主电路如图7所示。图中S0,S1,S2,S3,S4为全控型器件。负载依然为有源负载,直流输入端并联电感Lo。所有开关均采用PWM控制,此电路的元器件、电源、负载同样假设为理想的。输出滤波电感足够大,可保证负载电流连续,且线性升降。此电路与双象限Boost电路不同之处是主开关与电感相互交换位置。也是利用单象限Buck-Boost电路的主电路衍生出来的,并利用全桥全控电路实现双象限功能。改变占空比D可以实现升压或降压功能。

3.2    工作原理

3.2.1    运行于第一象限

    (0≤t≤DT)    S0,S1,S2均导通,S3及S4断开,等效电路如图8(a)所示,电感电压UL=Ud。

    (DT≤t≤T)    S0,S1及S3断开,S2及S4导通,等效电路如图8(b)所示,电感电压UL=-Uo。

3.2.2    运行于第四象限

    (DT≤t≤T)    S0,S2,S4断开,S1及S3导通,电感端电压反向,等效电路如图9(a)所示,电感电压UL=Uo。

    (0≤t≤DT)    S0,S3,S4导通,S1及S2断开,等效电路如图9(b)所示,电感电压UL=Ud。

    输出电压平均值为Uo=-DUd/(1-D)

4    结语

    本文在传统的单象限Buck、Boost、 Buck-Boost电路的基础上衍生了双象限的Buck、Boost、 Buck-Boost电路,并且分析了其具体的工作过程。本文的分析为双象限电路及直流变换电路的研究提供了新的思路。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

稳压器只能起到稳定直流电压的作用,它无法改变交流电压的大小和方向,也就无法替代变压器的作用。而变压器虽然自身并没有稳压功能,但是却能够改变电压大小和方向,使得电力设备能够正常传输和分配。

关键字: 稳压器 电压

自举电路(Bootstrap Circuit)是一种在电子电路中广泛应用的升压技术,其核心作用是通过电路自身的工作状态提升某个节点的电压,而无需增加外部电源电压。

关键字: 自举电路 电压

电路保护的意义在于保护电子电路中的元件免受过电压、过电流、浪涌和电磁干扰等有害因素的影响,从而防止设备损坏,确保电子设备的安全和稳定运行‌‌。

关键字: 电路保护 电压

在电子设备的稳定运行中,电源模块扮演着 “能量心脏” 的关键角色。然而,发热问题却如同潜藏的隐患,不仅可能导致模块性能衰减,严重时还会引发设备宕机甚至烧毁。深入探究电源模块发热的根源,对提升设备可靠性具有重要意义。经过工...

关键字: 电源模块 发热问题 电路拓扑

在电子电路中,负电压的产生通常需要一种特殊的电路配置。然而,有一个简单的方法可以获得负电压,那就是利用运算放大器(Op-Amp)和地线。具体来说,你可以将运算放大器配置为一个反相放大器,其输入端接地,并通过适当的电阻和电...

关键字: 电压 运算放大器

一直以来,变压器都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来变压器的相关介绍,详细内容请看下文。

关键字: 变压器 电压 减容

在实际应用中,高压输电通常采用升压变压器将电能升压至数十万伏甚至更高,以减少在输电过程中的电能损耗,并提高输电效率。例如,在我国,送电距离在200-300公里时采用220千伏的电压输电;在100公里左右时采用110千伏;...

关键字: 电压 电网

锂电池多次筛选的关键原因是内阻的重要性‌。锂电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,包括欧姆内阻和极化内阻‌。内阻的大小直接影响电池的性能和寿命。

关键字: 电压 锂电池

今天,小编将在这篇文章中为大家带来摇表的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 摇表 电阻 电压

上海 2025年6月10日 /美通社/ -- MPS芯源系统(NASDAQ代码:MPWR)近期发布了两款新产品:NovoOne开关MPXG2100系列和PFC稳压器MPG44100系列,旨在为快速发展的快速充电市场、工...

关键字: ACDC 高集成 PS 电压
关闭