当前位置:首页 > 电源 > 电源
[导读] 近年来,平板电视的发展非常迅速,而中国平板电视市场经过连续数年的快速增长现已进入成熟期。得益于销售价格的回落,3D、智能、互联网电视市场的显著增长,并随着三网融合

近年来,平板电视的发展非常迅速,而中国平板电视市场经过连续数年的快速增长现已进入成熟期。得益于销售价格的回落,3D、智能、互联网电视市场的显著增长,并随着三网融合的推进,预计IPTV、互动数字电视、智能互联网电视业务的用户数量将在几年内都达到千万级规模。这同时预示着,用于平板电视的高效且功能强大的开关电源需求也在显著增加。

安森美半导体提供的NCP1927功率因数校正(PFC)及反激组合控制器电源管理芯片,能够用于开发紧凑及高能效平板电视开关电源,配合纤薄平板电视设计潮流及帮助推动节能降耗。


配合平板电视开关电源设计要求


从行业的发展来看,CRT向平板电视的转变意味着能源消耗的增加。以液晶电视为例,液晶屏本身不发光,必须要用后面无数的灯管(背光模组)均匀照亮整个荧屏,再通过信号和液晶物质的流动显示出影像。要驱动这些灯管,并且让荧屏保持较高的亮度和分布,就需要消耗大量的电力。


在国内,目前彩电行业沿用的节能标准是《彩色电视广播接收机能效限定值及节能评价值》,该标准只要求达到待机状态下的节能要求。然而工作(开机)能耗才是决定平板电视耗电量的主导因素。因为没有相关标准,也就难以衡量平板电视真正的能耗水平。因此,人们关注的焦点是如何开发更具能源效率的电源设计,同时还要满足外型、成本方面的要求。


以研发紧凑及高能效方案著称的安森美半导体提供的NCP1927集成的PFC控制器采用临界导电模式(CrM)工作时可实现接近1的功率因数,包含了构建强固及紧凑PFC段所需的全部特性,且将外部元器件数量减至了最少。该器件集成的固定频率电流模式反激控制器采用专有的“软跳周期(Soft-SkipTM)”待机模式,且结合轻载时的频率反走功能,提供了极低的待机能耗。


安森美半导体的PFC及反激组合控制器NCP1927功能详解


NCP1927是集成了临界导电模式功率因数校正及反激控制器和时序电路的组合控制器,适合开发紧凑的高能效平板电视电源。其独特特性包括逆变器启用引脚、进入待机状态控制引脚、频率反走及软跳周期,体现了通知背光逆变器PFC输出已就绪、关闭PFC控制器,以及完整负载范围内的高能效优势。


NCP1927还具有其它特性,如极低启动电流消耗(最大值<20 μA)、包含关闭IC的关闭引脚、快速主电源/负载瞬态补偿、可编程PFC过压/欠压保护、带内置斜坡补偿的65 kHz固定频率、削弱EMI信号的频率抖动特性、带自动恢复的基于定时器的过流保护,以及提供针对绕组短路的保护、4 ms软启动等。


·简化系统设计:NCP1927设计适用于背光逆变器采用PFC段供电而信号处理及音频放大器采用反激段供电的系统。从图1的NCP1927框图中看到,在电压高于1 V时,NCP1927可关闭PFC及反激电路;拉高时PFC启用;在PFC就绪时通知背光逆变器导通。这样,NCP1927就为平板电视电源提供了一个简单、紧凑及可靠的方案。


图1:NCP1927框图

·启动序列/待机/启用逆变器:图2是NCP1927的启动序列,其顺序是VCC充电直至VCC(on)、反激段启用、反激段到达稳压状态、PFC段启用、PFC段到达稳压状态、逆变器启用。


图2:NCP1927的启动序列

当GTS(进入待机,Go To Standby)引脚电压降至低于VSTANDBY时,PFC关闭,且保持待机状态,直至电压增加到高于VSTANDBY+VSTANDBY(HYS)。PFC可以通过反激电路FB引脚自动关闭,或以光耦直接控制,如图3所示,方法1是根据反激段FB引脚电压来触发GTS;方法2是使用次级端信号来触发GTS。


图3:进入待机的两种方法

·启用逆变器:NCP1927监测PFC误差放大器电流,一旦此电流降低至0 μA,就会通知逆变器导通。如图4(a)所示;当PFC处于稳态稳压时,IENABLE引脚提供5 V输出。如图4(b)所示。


图4:启用引脚序列

·轻载能效特性:NCP1927提供三种工作模式:第一种是正常的65 kHz固定频率工作;第二种是频率反走,即在轻载时振荡器频率线性降低至26 kHz;第三种是轻载时软跳周期模式,即驱动停止,跳开关周期。这三种工作模式结合在一起,优化完整负载范围内的能效。


图5:VFFB下降时的开关频率

反激段软跳周期模式:图6给出了电压模式到电流模式工作的过程。FB信号与内置斜坡信号比较;内置斜坡信号允许在电流模式控制开始前出现一些短脉冲。在该模式下VFFB上升时,驱动器又开始开关,占空比逐渐从0%上升。该模式可降低可听噪声风险,同时支持在钳位网络中使用廉价变压器及电容。

图6:软跳架构的跳周期


·PFC跳周期模式:在该模式下,Pcontrol电压降至低于可编程跳周期电平时,PFC停止开关;在稳压电压自然地回升至高于跳周期电平时(增加了延迟特性),PFC恢复开关。跳周期电平用RPSKIP来调节,见图7。

图7:PSKIP引脚电路


保护特性:在PFC段,有过流保护(OCP)、过压保护(OVP)、欠压保护(UVP)功能;在反激段,有过载保护(带80 ms故障定时器)、绕组短路保护和过热关闭。器件设有PFC过压保护(OVP)及欠压保护(UVP)专用引脚。在出现浮动引脚时,IUVP电流源激活UVP,见图8。带专用POVUV引脚的双反馈配置提供更高的安全等级,即使双反馈配置中某个故障,也可确保提供保护。


图8:POVUV引脚框图

故障管理:即VCC断续(Hiccup)功能。在非闩锁故障(关闭模式、过热关闭及反激过载)条件下,门驱动器关闭,内部IC电流功耗导致VCC降低至VCCOFF。一旦VCC上升至VCCON,故障复位,IC电流消耗降至启动电流电平,使器件重启。

图9:VCC断续时的VCC

NCP1927控制器具体应用


图10是使用NCP1927的140 W液晶电视的开关电源的实物照片。其输出1为390 V,250 mA;输出2为5 V,2 A;输出3为12 V,2.5 A。平均能效大于82%;满载能效大于85%;空载输入功率小于150 mW;功率因数大于0.95;启动时间小于2秒。图11是其电路图。


图10:140 W液晶电视开关电源实物照片


图11:140 W液晶电视电路图

从图12、13、14中可以分别看出140 W液晶电视的待机能耗小于50 mW,轻载能效极佳;平均能效及满载能效很高;功率因数超越了要求,令人满意。


图12:空载能耗


图13:能效


图14:功率因数

结论

安森美半导体的NCP1927提供紧凑及强固的平板电视电源所需的所有特性,由于采用了专用逆变器启用、PFC关闭(GTS)及关闭控制,大幅简化了系统设计;频率反走、反激段软跳周期及PFC跳周期模式优化了能效。它同时提供了包括过载保护及专用欠压和过压保护引脚等强固的保护特性,是开发紧凑及高能效平板电视开关电源不可多得的理想器件。





本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

随着科技的快速发展,电子设备已经深入到我们生活的方方面面,无论是智能手机、笔记本电脑还是智能家居设备,它们都需要稳定可靠的电源供应来保证其正常运行。在这个背景下,开关电源适配器作为电源管理的重要组件,发挥着不可或缺的作用...

关键字: 开关电源 电源适配器

在科技飞速发展的今天,电子设备已经成为了我们日常生活中不可或缺的一部分。而在这些电子设备的内部,一个不可或缺的组成部分便是开关电源芯片。作为电源管理集成电路的核心,开关电源芯片在电子设备中发挥着至关重要的作用。本文将深入...

关键字: 开关电源 芯片

开关电源芯片作为电子设备中的重要组成部分,是实现电源转换和管理的核心器件。随着科技的不断进步,开关电源芯片的种类也在不断增加,各具特色,满足了不同设备和应用场景的需求。本文将深入探讨开关电源芯片的种类及其科技应用,带领读...

关键字: 开关电源 芯片

开关电源作为电子设备中的核心部件,负责将交流电转换为稳定的直流电,为设备的正常运行提供可靠的电力保障。然而,随着使用时间的增长和外部环境的变化,开关电源也可能出现故障,影响其正常工作。本文将重点介绍开关电源的常见故障及其...

关键字: 开关电源 电源 电子设备

开关电源作为电子设备中的关键部件,其稳定性和可靠性对于设备的正常运行至关重要。然而,在使用过程中,开关电源有时也会出现故障,需要进行维修。本文将为您详细介绍开关电源的维修步骤,帮助您快速解决电源问题,恢复设备的正常使用。

关键字: 开关电源 电源 电子设备

随着科技的飞速发展,电子设备已经渗透到我们生活的方方面面,从智能手机、电脑到家用电器,无一不需要稳定的电力供应。而在这背后,开关电源作为电力转换和管理的关键部件,正发挥着至关重要的作用。本文将深入探讨开关电源在现代科技中...

关键字: 开关电源 电源

在科技日新月异的今天,DC-DC开关电源作为电源管理领域的关键技术,已经广泛应用于各类电子设备中。它以其高效、稳定、可靠的特性,为各类设备提供了稳定可靠的电力保障。那么,DC-DC开关电源是如何工作的呢?本文将深入探索其...

关键字: dc-dc开关电源 开关电源

在电力电子领域中,开关电源是一种重要的电源转换装置,其广泛应用于各种电子设备中。推挽开关电源是开关电源中的一种重要类型,以其高效率、高可靠性和优秀的电磁兼容性而受到广泛关注。本文将详细解析推挽开关电源的工作原理,以便读者...

关键字: 推挽开关电源 开关电源

反激式开关电源的典型电路如下图所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。

关键字: 反激 开关电源 高频变换器

在电力电子技术领域,尤其是在开关电源和逆变器等高频开关电路中,尖峰吸收电路扮演着至关重要的角色,它是一种有效的防护措施,用于抑制因开关过程中产生的瞬态过电压(电压尖峰)及其伴随的浪涌电流,从而保护功率半导体器件免受损害。...

关键字: 尖峰 开关电源
关闭
关闭