当前位置:首页 > 电源 > 数字电源
[导读]由于集成的功能不断增多以及外形尺寸的日益缩小,最新一代功能丰富的更小型便携式设备将使电源管理设计发挥关键作用。一般来说,便携式设备主要包括微处理器、I/O外设、LED背光、闪存和/或硬盘驱动器(HDD)、数字和模

由于集成的功能不断增多以及外形尺寸的日益缩小,最新一代功能丰富的更小型便携式设备将使电源管理设计发挥关键作用。一般来说,便携式设备主要包括微处理器I/O外设、LED背光、闪存和/或硬盘驱动器(HDD)、数字和模拟电路,这些功能模块对电源的要求各不相同。为使这些功能模块正常工作并最小化功耗以实现更长的电池使用时间,系统设计工程师面临如何设计嵌入式电源管理解决方案以满足电源要求的挑战。本文对电源要求进行了分析,并重点阐述如何设计这些电源管理电路。

为微处理器供电

微处理器是处理各种数据和命令的核心器件,大多数微处理器都采用CMOS电路并具有开关功耗和静态功耗。数字电路的每一次开关转换均对数字电路的输出电容进行充放电,由此产生的功耗由下式表示:

其中,C为总负载电容,fS为开关频率,VCORE为施加在微处理器上的电源电压。根据此公式得知:时钟频率的降低将使功耗呈线性下降,电压的降低可导致功耗呈二次方程式下降。随着微处理器处理速度越来越快,施加在微处理器上的电压将降低小于1V以最小化功耗。

微处理器最常见的供电电压范围为1.0~1.5V。从电压要求来看,大多数微处理器都具有严格的电压容差,在稳定状态和负载瞬态时的电压容差不到100mV。由于微处理器对低工作电压和大电流(具有大的边沿斜率)的要求,电源管理设计工程师面临既要满足严格的电压瞬态要求,又要解决系统功耗预算和电池运行时间(高转换效率)的难题。微处理器的功耗通常为系统总功耗的30~40%左右。通常为便携式设备供电的锂离子电池,采用LiCo02阴极材料,其典型的电池工作电压范围介于3.0~4.2V。

图1所示的同步降压转换器拓扑能有效地将电池电压转换为低内核电压。通常,具有集成MOSFET的固定频率脉宽调制(PWM)DC/DC转换器在正常负载条件下具有90%以上的转换效率,但由于开关损耗和栅极驱动损耗的影响,它们在轻负载条件下(如便携式设备的待机模式)的效率较低。为使便携式设备实现超长的电池待机时间,转换器能在轻负载条件下提供高效率非常重要。

图1:(a) 同步降压转换器拓扑结构图;(b) 负载瞬态过程中的负载电流和电感电流

首先是要设计降压转换器工作在非同步模式,这样就避免了因尽量减少与回路电流有关的传导损耗而导致的负电感电流。此外,脉宽频率调制或脉冲跳跃(pulse skip)模式通常用于最小化栅极驱动和开关损耗。诸如TI开发的节电模式等专用技术通过关闭部分控制电路来降低开关损耗,并使PWM控制器的静态电流最小。在150μA的负载条件下,可以实现低至18μA的静态电流和超过70%的效率。

然而,对从轻负载到高负载的负载瞬态而言,这种降压转换器带来了另一个挑战,即它需要一个延迟时间来唤醒PWM控制器并使其进入工作状态。在此延迟时间内,输出电容必须为负载供电,这将引入一个与固定频率PWM转换器有关的额外电压降。如何克服节电模式带来的这一负面影响呢?微处理器的电压规范允许具有±5%的总容差,其中包括稳定状态误差和负载瞬态。可以将轻负载时的输出电压提高1%左右,以补偿由于控制电路唤醒延迟引起的额外压降。

事实上,对移动处理器而言,提高轻负载时的输出电压是一贯的做法,这一做法被称为负载线调节。这种技术增大了瞬态电压的摆幅,因此它允许对额外电压降进行补偿或使用更小的输出电容。此外,控制环路设计和电感设计对电压瞬态响应的影响非常大。那么,如何选择正确的电感和设计控制环路带宽来实现快速的瞬态响应,并在保持高效率的同时满足电压瞬态要求呢?

对从小于1mA负载到满负载的阶跃负载瞬态而言,电压瞬态响应通常应在±3%以内。当阶跃负载被施加到系统和输出电容时,该电压瞬态与等效串联电阻(ESR)和转换延迟密切相关。通常情况下会采用小型ESR陶瓷电容,因此,通过优化环路设计和电感值来最小化输出电容器两端的电压瞬态最具挑战性。输出电容器需要在瞬态响应期间提供负载电流。微处理器所需电流的斜率比降压转换器电感电流的斜率大得多。负载电流和电感电流之间的差决定了需要由输出电容提供的电荷数量,如图1(b)所示。如果可以减少该非平衡电荷,则能降低瞬态电压,减小输出电容。电感电流的斜率越大,瞬态响应就越快,压降也就越低,因此瞬态响应取决于电感电流跟随负载电流的方式。电感电流上升时间与此处描述的控制环路带宽密切相关。

其中,fC为闭环环路带宽。另一方面,反馈控制环路在轻负载到高负载转换期间使占空比加大,在电感两端出现净电压增加,这会引起电感电流增加。平均电感电流的上升时间由下式得出:

其中L、VIN以及ΔD分别为电感、输入电压和占空比增加值。在给定带宽下提供同样快速的瞬态响应的最大电感被称为临界电感。该临界电感为经过优化的电感,可为实现最高效率提供尽可能高的带宽和最小电感电流纹波。通过以上两个方程式能得到在给定环路带宽条件下实现最快瞬态响应的临界电感。

其中,ΔDMAX为负载瞬态期间最大的占空比增加值。由此可见,采用小型电感也可以获得高环路带宽,从而实现快速的负载瞬态响应以满足瞬态电压要求。图2给出了小型电感和大型电感的输出电压瞬态响应曲线,它表明电感越小,负载瞬态响应越快。

更多医疗电子信息请关注:21ic医疗电子

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

中国上海,2025 年9月9日 — Nexperia 每年增加 800 多种新产品类型。2024 年,仅模拟和电源管理应用便推出了超过 70 种新部件。为支持 Nexperia 产品扩展,e络盟紧跟其不断扩大的产品组合,...

关键字: 电源管理 SiC 二极管

随着汽车电子设备日益复杂,车企对体积紧凑、高能效、可靠的解决方案的需求不断增长,多输出功率开关在集成度、成本效益、故障诊断和能效方面优势愈发明显。现代汽车工业越来越依赖众多的低功率电子模块,例如,传感器、LED和继电器。...

关键字: 功率开关 电源管理 传感器

现代社会对计算能力的需求日益增长。人工智能 (AI) 的飞速发展推动了数据量的爆炸式增长,包括数据的创建、处理和存储。AI已渗透到现代生活的方方面面,从汽车到购物方式无所不在。在工业领域,边缘计算改变了制造业,创造了一个...

关键字: 微处理器 电源 人工智能

与计算和仿真工具相比,电源架构的设计工具并未得到广泛使用。然而,这些工具在电路电源系统的开发过程中起到至关重要的作用。作为电源开发流程的初始环节,这些工具为创建出色的电源架构奠定了基础。

关键字: 电源架构 电路电源系统 电源管理

在当今的电子设备领域,随着技术的飞速发展,设备对于电源管理的要求越来越高。从智能手机、平板电脑等便携式设备,到复杂的通信基站、工业控制系统,电源的稳定、高效供应都是保障设备正常运行的关键。低压 LDO(Low Dropo...

关键字: 电源管理 稳压器 低压差

新闻摘要 在OCP亚太峰会上,伟创力推出了专为NVIDIA GB300 NVL72平台设计的新型电源架,该平台配备72颗NVIDIA Blackwell Ultra...

关键字: 伟创力 英伟达 电源管理 AI

在电子电路中,电解电容的纹波电流承受能力直接影响其使用寿命和电路稳定性。准确测试纹波电流不仅能验证电容性能是否达标,也是电路设计可靠性验证的关键环节。以下从测试原理、设备准备、操作步骤到数据解读,全面介绍电解电容纹波电流...

关键字: 电解电容 纹波电流 电路设计

在现代电子设备中,电源管理系统的性能对于设备的整体表现至关重要。低压差线性稳压器(Low Dropout Regulator,LDO)作为电源管理的关键组件,在确保稳定输出电压的同时,以其低压差、低功耗的特性,满足了众多...

关键字: 电源管理 低压差 线性稳压器

在当今数字化时代,电子设备的广泛应用使得电源管理成为了一个至关重要的领域。从智能手机、笔记本电脑到数据中心、电动汽车,高效的电源管理对于设备的性能、能效和尺寸都起着决定性作用。近年来,氮化镓(GaN)技术的兴起,为电源管...

关键字: 氮化镓 电源管理 宽禁带

在现代电子系统中,电源管理是确保系统稳定、高效运行的关键环节。随着系统复杂性的不断增加,多个组件可能需要不同的电源轨,且这些电源轨的上电和断电顺序往往有着严格要求。负载开关作为一种可用于开启和关闭系统中电源轨的电子继电器...

关键字: 电源管理 上电 断电
关闭