当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]谷歌的无人车在美国开了几十万公里,通过训练练出一个自动驾驶的AI模型。这个模型训练出来之后,未来可以部署到每一台量产的谷歌无人车,实现自动驾驶。在自动驾驶中,这个AI模型就必须实时进行推断。

谷歌的无人车在美国开了几十万公里,通过训练练出一个自动驾驶的AI模型。这个模型训练出来之后,未来可以部署到每一台量产的谷歌无人车,实现自动驾驶。在自动驾驶中,这个AI模型就必须实时进行推断。

 

 

图片来自网络

英伟达Q1的财报发布后几小时,股价就暴涨14%。

老黄的Keynote还没讲完,英伟达市值就被推高20%,突破700亿美元。

华尔街疯狂的背后,是人工智能的大潮,与推动这一大潮的全新技术。

英伟达最新的GPU芯片——TeslaV100及其TensorCore,必将让这科技的大潮又起一层浪。

眼看着英伟达在这人工智能的浪潮中一骑绝尘,它的技术到底能有多厉害?难道其他芯片巨头就真的在吃干饭吗?

今天,我们特意邀请到两位芯片领域的专家,专门来聊聊英伟达的新技术,以及这场AI芯片大战的关键看点。

英伟达领先多少

昨天以前,英伟达在深度学习芯片领域已经非常领先了,但是还不是遥不可及。

但在一口气发布的7个产品和计划后,特别是其中的TeslaV100,确实震撼。可以说,大大拉开了它与竞争对手的距离。

这不由得让人想起90年代,思科成为互联网第一波红利的最大获益者。现在AI时代的到来,尽管我们还不知道它这一轮到底能冲多高,但大家都还在摩拳擦掌、买枪买炮。

而英伟达却第一时间成为一家独大的军火商,肯定是AI第一波红利的最大获益者。

英伟达在GTC大会推出的全新GPU,确实在技术上划了时代,吊打所有对手。

通用的GPU单元,专门的Tensor加速器,矩阵运算绝对性能爆炸,同时还兼顾其他算法。不愧是英伟达凭借多年在深度学习领域的积累、对需求深刻洞察之后推出的心血大作,比上一代强大十倍的性能,既适合训练又适合部署。

就此,老黄已直接对绝大多数做深度学习芯片的创业项目宣判了死刑。

为什么GPU就适合AI?

我们来科普一下。深度学习是机器学习的一种技术,基于深度神经网络,这一轮AI主要就是深度学习技术突破引领的。

而深度学习里面绝大多数的运算都是矩阵运算,矩阵运算天生就容易并行,而GPU最擅长的就是做并行数学计算,所以特别适合做深度学习。

2012年的时候,Geoffrey Hinton的学生Alex Krizhevsky用GPU来做深度学习,并且取得了ImageNet大赛冠军。经过他们的评测,用GPU比CPU快60倍。

人工智能研究者一找上GPU,英伟达立马抓住机会,短时间内动用数千工程师、投入20亿美元,研发出第一台专门为深度学习优化的Pascal GPU。所以,在深度学习大行其道的今天,英伟达就成了大赢家了。而深度学习中GPU的应用,有这两个场景:一个是训练,一个是部署。所谓训练,就是AI的构建过程,研究员在线下通过喂给AI算法大量的数据,产生出一个模型。而部署,就是把训练好的这个模型拿到应用现场去用,去做推断。

比如说,谷歌的无人车在美国开了几十万公里,通过训练练出一个自动驾驶的AI模型。这个模型训练出来之后,未来可以部署到每一台量产的谷歌无人车,实现自动驾驶。在自动驾驶中,这个AI模型就必须实时进行推断。

训练阶段,我们主要关心的是大规模的计算吞吐率,而到了部署中,更强调的是绝对的计算能力、低延迟、高性能功耗比、高稳定性。

现在在AI界,训练模型普遍采用英伟达的GPU,但是到了部署领域呢,有人用GPU,有人用谷歌的TPU,有人用英特尔,还有一大批嵌入式芯片开发商正在开发专用的前端深度学习芯片。

但是,刚刚发布的V100,既适合做训练,又适合做推断,除了功耗较大以外,在能力方面实现了左右通杀,所以确实厉害。

另外,英伟达还有一个专门用来部署的运行时环境叫TeslaRT。所以英伟达在AI芯片领域真有点一骑绝尘的架势了。

难道无人能挡英伟达?

AI芯片这么大的一块蛋糕,总得多有几个人来分才热闹,就算英伟达现在的优势不容置疑,那接下来的疑问就是,它的优势究竟能持续多久?

谷歌TPU

几天前,在谷歌TPU团队出走半数后,计算机体系架构的宗师DavidPatterson宣布他要加入谷歌,正式参与TPU项目。

上个月,谷歌关于TPU性能的论文披露说,TPU运行速度是英伟达和英特尔相关处理器的15-30倍,能效高出30-80倍。

谷歌的TPU适用于部署,能跟谷歌自家的TensorFlow紧密结合。可惜它是闭源的,谷歌视它为核心竞争力,应该不会开放给别人用。

TPU的第一版很惊艳,不过缺点也很多。现在从谷歌的论文来看,这个架构有点过时,实践当中也会有很大局限性。虽说这次DavidPatterson加入谷歌TPU团队的动静很大,但我们还是应当保持冷静、继续观察。

英特尔

另一个能跟英伟达叫板的,就是老牌芯片巨头英特尔,但它的CPU擅长高速处理数字,却不擅长处理音视频等非结构化数据。

于是在去年,英特尔耗资4亿美元收购深度学习初创企业Nervana,试图通过Nervana Systems在硅层实现机器学习。今年3月,这家土豪又怒砸153亿美元收购一家以色列芯片公司Mobileye,土豪要用自己家的高性能计算和网络连接能力,结合Mobileye的计算机视觉专业技术,打造从云端直达每辆汽车的无人驾驶解决方案,深化它在自动驾驶领域的布局。

收购Nervana,是英特尔非常厉害的一招。因为,这家公司前几年一直在帮英伟达优化GPU平台。他们是一群顶级黑客团队,hack了GPU的native指令集,写出了比当时的cudnn(NVIDIA自己的深度学习数学库)还要快若干倍的数学库。他们的成果都开源给了社区,cudnn后面的进步很大程度是因为吸收了这些成果。这家公司被英特尔收购后,就断了继续为英伟达提供服务的可能,同时也极大增强了英特尔的实力。

英特尔现在是allinAI,它的几大产品线,都会重点针对深度学习进行专门定制,比如之前作为HPC平台的XeonPhi加速计算卡,收购的AlteraFPGA,包括NervanaSystem,都是各自独立的深度学习产品线。其他还包括IoT部门,还有收购的Movidius公司,这些是提供嵌入式和端的解决方案。

小编听完,真是眼界大开。

这样来看,在深度学习芯片上,英伟达一马当先,英特尔黄雀在后,而谷歌的TPU,还真是任重而道远啊。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

业内媒体报道,近日美国进一步收紧了对华为的出口限制,吊销了英特尔、高通等公司向华为出口芯片的许可证。华为迅速反击,海思半导体董事长何庭波,终端 BG 董事长余承东对内发布《致战友们的一封信》,提出针对 PC 端芯片的备胎...

关键字: 华为 高通 英特尔

5月9日消息,DRAM内存芯片和内存条、NAND闪存和SSD硬盘正在新一轮的上涨周期中加速狂奔,集邦咨询在最新报告中大幅上调了二季度的价格涨幅预期,尤其是内存。

关键字: SSD 存储芯片 芯片 英伟达

5月5日消息,近日,日本多家电信公司联合宣布开发出世界上首个高速6G无线设备。

关键字: 6G 英伟达 诺基亚

4月25日消息,现在,3GPP项目协调小组(PCG)在其第52次会议上正式批准了6G Logo。

关键字: 6G 英伟达 诺基亚

据报道,日本电信巨头软银集团将在未来两年投资1500亿日元(9.6亿美元)升级其计算设施,该计划包括大量采购英伟达GPU。

关键字: 软银 英伟达 GPU AI

上周英伟达股价大跌,市值蒸发竟然超过AMD整个市值。所谓的“Magnificent Seven”市值蒸发合计达9500亿美元。如果单看股价跌幅,最大的是特斯拉;如果只看市值蒸发,苹果、微软、英伟达跌幅最大。

关键字: 英伟达 市值蒸发 AMD 市值

4月22日消息,中国第一季度半导体产量激增40%,标志着成熟制程芯片在中国市场的主导地位日益巩固。

关键字: 半导体 英特尔 意大利

业内消息,近日英特尔表示其已成为第一家完成组装荷兰ASML的新型“High NA”(高数值孔径)EUV(极紫外)光刻设备的公司,目前已转向光学系统校准阶段。这是这家美国芯片制造商超越竞争对手的重要举措。

关键字: 英特尔 ASML EUV 光刻机

近日消息,《巴伦周刊》作家Tae Kim在社交媒体平台表示, 一名中层英伟达员工凭借“员工股票购买计划(ESPP)”积累了6200万美元(当前约合人民币4.5亿)的财富。乐见在AI的热潮之下,英伟达股价持续大涨不仅造就了...

关键字: 英伟达

近日,英特尔联合华铭、锐宝智联和育脉共同打造了融合掌静脉特征识别技术的智能城市轨道交通自动售检票系统(AFC)方案,将掌静脉特征识别技术应用于城市轨道交通场景,实现了轨道交通自动售检票系统的技术革新。

关键字: 英特尔 智慧交通
关闭
关闭