当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]U-BOOT的启动流程及移植

    摘要:嵌入式系统一般没有通用的bootloader,u-boot是功能强大的bootloader开发软件,但相对也比较复杂。文中对u-boot的启动流程作了介绍,详细给出了u-boot在S3C44B0开发板上的移植方法和步骤。

    关键词:bootloader;u-boot;嵌入式系统;移植;S3C44B0

1 Bootloader及u-boot简介

Bootloader 代码是芯片复位后进入操作系统之前执行的一段代码,主要用于完成由硬件启动到操作系统启动的过渡,从而为操作系统提供基本的运行环境,如初始化CPU、 堆栈、存储器系统等。Bootloader 代码与CPU 芯片的内核结构、具体型号、应用系统的配置及使用的操作系统等因素有关,其功能类似于PC机的BIOS程序。由于bootloader和CPU及电路板的配置情况有关,因此不可能有通用的bootloader ,开发时需要用户根据具体情况进行移植。嵌入式Linux系统中常用的bootloader有armboot、redboot、blob、u-boot等,其中u-boot是当前比较流行,功能比较强大的bootloader,可以支持多种体系结构,但相对也比较复杂。bootloader的实现依赖于CPU的体系结构,大多数bootloader都分为stage 1和stage 2两大部分。Bootloader的基本原理见参考文献。

u-boot是sourceforge网站上的一个开放源代码的项目。它可对 PowerPC?MPC5xx、MPC8xx、MPC82xx、 MPC7xx、MPC74xx?、ARM(ARM7、ARM9、StrongARM、Xscale)、MIPS(4kc、5kc)、X86等处理器提供支持,支持的嵌入式操作系统有Linux、Vx-Works、NetBSD、QNX、RTEMS、ARTOS、LynxOS等,主要用来开发嵌入式系统初始化代码bootloader。软件的主站点是http?//sourceforge.net/projects/ u-boot。u-boot 最初是由denx?www.denx.de?的PPC-boot发展而来的,它对PowerPC系列处理器的支持最完善,对Linux 操作系统的支持最好。源代码开放的u-boot软件项目经常更新,是学习硬件底层代码开发的很好样例。

2 u-boot系统启动流程

大多数bootloader都分为stage1和stage2两大部分,u-boot也不例外。依赖于CPU体系结构的代码(如设备初始化代码等)通常都放在stage1?且可以用汇编语言来实现,而stage2则通常用C语言来实现,这样可以实现复杂的功能,而且有更好的可读性和移植性。

2.1 stage1 (start.s代码结构)

u-boot的stage1代码通常放在start.s文件中,它用汇编语言写成,其主要代码部分如下:

(1) 定义入口 。由于一个可执行的Image必须有一个入口点,并且只能有一个全局入口,通常这个入口放在ROM(Flash)的0x0地址,因此,必须通知编译器以使其知道这个入口,该工作可通过修改连接器脚本来完成。

(2)设置异常向量(Exception Vector)。

(3)设置CPU的速度、时钟频率及中断控制寄存器。

(4)初始化内存控制器 。

(5)将ROM中的程序复制到RAM中。

(6)初始化堆栈 。

(7)转到RAM中执行,该工作可使用指令ldr pc来完成。

2.2 stage2?C语言代码部分?

lib arm/board.c中的start armboot是C语言开始的函数,也是整个启动代码中C语言的主函数,同时还是整个u-boot(armboot)的主函数,该函数主要完成如下操作:

(1)调用一系列的初始化函数。

(2)初始化Flash设备。

(3)初始化系统内存分配函数。

(4)如果目标系统拥有NAND设备,则初始化NAND设备。

(5)如果目标系统有显示设备,则初始化该类设备。

(6)初始化相关网络设备,填写IP、MAC地址等。

(7)进入命令循环(即整个boot的工作循环),接受用户从串口输入的命令,然后进行相应的工作。

3 移植实例

本系统开发板主要由S3C44B0X嵌入式微处理器、2MB的Flash (SST39VF160)、8MB的SDRAM(HY57V641620)、4个LED以及ARM JTAG接口组成。该开发板上与S3C44B0X相关部分的功能框图如图1所示。

3.1 u-boot文件下载

u-boot文件的下载有两种方法,第一种是在Linux环境下通过CVS下载最新的文件,方法是:

$cvs-d?pserver?anonymous@cvs.sourceforge. net?/cvsroot/u-boot login

当要求输入匿名登录的密码时,可直接按回车键

$cvs-z6-d?pserver?anonymous@cvs.source forge.net?/cvsroot/u-boot\co.P modulename

第二种是通过ftp?//ftp.denx.de/pub/u-boot/ 下载正式发布的压缩文件。

3.2 u-boot文件的结构

初次下载的文件有很多,解压后存放在u-boot文件目录下,具体内容已在readme文件中做了详细的介绍,其中与移植相关的主要文件夹有:

(1)CPU?它的每个子文件夹里都有如下文件:

makefile

config.mk

cpu.c 和处理器相关的代码

interrupts.c 中断处理代码

serial.c 串口初始化代码

start.s 全局开始启动代码

(2)BOARD?它的每个子文件夹里都有如下文件:

makefile

config.mk

smdk2410.c 和板子相关的代码(以smdk2410为例)

flash.c Flash操作代码

memsetup.s 初始化SDRAM代码

u-boot.lds 对应的连接文件

(3)lib arm?体系结构下的相关实现代码,比如memcpy等的汇编语言的优化实现。

3.3 交叉编译环境的建立

要得到下载到目标板的u-boot二进制启动代码,还需要对下载的u-boot1.1.1进行编译。u-boot的编译一般在Linux系统下进行,可用ARM-LIN-UX-GCC进行编译。一步一步建立交叉编译环境通常比较复杂,最简单的方法是使用别人编译好的交叉编译工具,方法如下:

(1)在http?//handhelds.org/download/toolchain下载 arm-Linux-gcc-3.3.2.tar.bz2

(2)以用户名root登录,将arm-linux-gcc-3.3.2.tar.bz2 解压到 /root目录下

# tar jxvf arm-linux-gcc-3.3.2.tar.bz2

(3)在http?//handhelds.org/download/toolchain下载 arm-linux-toolchain-post-2.2.13.tar.gz ?只是用了它的头文件而已,主要来自内核/linux-x.x/include下?

(4)将arm-linux-toolchain-post-2.2. 13.tar.gz 解压到 /skiff/local/ 下

# tar zxvf arm-linux-toolchain-post-2.2.13.tar.gz

(5)拷贝头文件到/root/usr/3.3.2/arm-linux/ 下?然后删除 /skiff

# cp -dR /skiff/local/arm-linux/include /root/usr/3.3.2/arm-linux

# rm -fr /skiff

这样就建立了arm linux 交叉编译环境。

(6)增加/root/usr/local/arm/3.3.2/bin到路径环境变量

path=$path:/root/usr/local/arm/3.3.2/bin? 可以检查路径变量是否设置正确。# echo $path

3.4 移植的预先编译

移植u-boot到新的开发板上仅需要修改与硬件相关的部分即可。主要包括两个层面的移植,第一层是针对CPU的移植,第二层是针对BOARD的移植。由于u-boot 1.1.1里面已经包含S3C44B0的移植,所以笔者对板子myboard的移植主要是针对BOARD的移植。移植之前需要仔细阅读u-boot目录下的readme文件,其中对如何移植做了简要的介绍。为了减少移植的工作量,可以在include/config目录下选一个和要移植的硬件相似的开发板,笔者选的是b2开发板。具体步骤如下:

(1)u-boot 1.1.1 下的CPU文件夹里已经包括了S3C44B0的目录,其下已经有start.s?interrupts.c以及 cpu.c?serial.c几个文件,因而不需要建立与CPU相关的目录。

(2)在board目录下创建myboard目录以及my-board.c、flash.c、memsetup.s和u-boot.lds 等文件。不需要从零开始创建,只需选择一个相似的目录直接复制过来,然后修改文件名及内容即可。笔者在移植u-boot过程中选择的是u-boot 1.1.1/board/dave/B2目录。

(3)在include/configs目录下添加myboard.h,在这里可放入全局的宏定义等?也不需要从头创建,可以在include/configs目录下寻找相似的CPU的头文件进行复制,这里笔者用的是B2.h文件来进行相关的修改。

(4) 对u-boot根目录下的makefile文件进行修改,加入

myboard_config : unconfig

@./mkconfig $(@:_config=)arm S3C44B0 myboard

(5) 修改u-boot根目录下的makefile文件,加入对板子的申明。然后在makefile 中加入myboard、LIST ARM7=″B2 ep7312 impa7 myboard″。

(6)运行make clobber,删除错误的depend文件。

(7)运行make myboard config。

(8)执行到此处即表示整个软件的makefile已建立,这时可修改生成的makefile中的交叉编译选项,然后打开makefile 文件,并找到其中的语句:

ifeq($(ARCH),arm)

CROSS_COMPILE=arm-linux-

end if

接着将其改成

ifeq($(ARCH),arm)

CROSS COMPILE=/root/usr/local/3.3.2/bin/arm-linux-

end if

这一步和上面的设置环境变量只要有一个就可以了。

执行make,报告有一个错误,修改myboard/flash.c中的#include ″../common/flash.c"为"u-boot/board/dave/common/flash.c″,重新编译即可通过。

4 移植时的具体修改要点

若预先编译没有错误就可以开始硬件相关代码的移植,首先必须要对移植的硬件有清楚地了解,如CPU、CPU的控制寄存器及启动各阶段程序在Flash?SDRAM中的布局等。

笔者在移植过程中先修改/include/config /my-board.h头文件中的大部分参数(大部分的宏定义都在这里设置),然后按照u-boot的启动流程逐步修改。修改时应熟悉ARM汇编语言和C语言,同时也应对u-boot启动流程代码有深入的了解。B2板的CPU频率为75MHz、Flash为4Mbit、SDRAM为16Mbit、串口波特率为115200bit/s、环境变量放在EEPROM中。根据两个开发板的不同,需要修改的有:CPU的频率、Flash和SDRAM容量的大小、环境变量的位置等。由于参考板已经有了大部分的代码,因此只需要针对myboard进行相应的修改就可以了。与之相关的文件有/include/config /myboard.h(大部分的宏定义都在这里设置)、/board/myboard/flash.c?Flash的驱动序?、/board/myboard /myboard.c(SDRAM的驱动程序)、/CPU/S3C44B0/serial.c(串口的驱动使能部分)等。

/include/config /myboard.h是全局宏定义的地方,主要的修改有:

将#define CONFIG S3C44B0 CLOCK SPEED 75改为

#define CONFIG S3C44B0 CLOCK SPEED 64;

将 #define PHYS SDRAM 1 SIZE 0x01000000 /* 16 MB */ 改为

#define PHYS SDRAM 1 SIZE 0x00800000 /* 8 MB */;

将 #define PHYS FLASH SIZE 0x00400000 /* 4 MB*改为

#define PHYS FLASH SIZE 0x00200000 /* 2 MB */;

将 #define CFG MAX FLASH SECT 256 /* max number of sectors on one chip */改为

#define CFG MAX FLASH SECT 35 ;

将 #define CFG ENV IS IN EEPROM 1 /* use EEPROM for environment vars*/改为

#define CFG ENV IS IN FLASH 1

其它(如堆栈的大小等)可根据需要修改。

由于Flash、SDRAM的容量会发生变化,故应对启动阶段程序在Flash、SDRAM中的位置重新作出安排。笔者将Flash中的u-boot代码放在0x0开始的地方,而将复制到SDRAM中的u-boot代码安排在0xc700000开始的地方。

Flash的修改不仅和容量有关,还和具体型号有关,Flash存储器的烧写和擦除一般不具有通用性,应查看厂家的使用说明书,针对不同型号的存储器作出相应的修改。修改过程中,需要了解Flash擦写特定寄存器的写入地址、数据命令以及扇区的大小和位置,以便进行正确的设置。

SDRAM要修改的地方主要是初始化内存控制器部分,由start.s文件中的 cpu init crit完成CPU cache的设置,并由 board/myboard/memsetup.s中的memsetup完成初始化SDRAM。S3C44B0提供有SDRAM控制器,与一些CPU需要UPM表编程相比,它只需进行相关寄存器的设置修改即可,因而降低了开发的难度。

串口波特率不需要修改(都是115200bit/s),直接用B2板的串口驱动即可。串口的设置主要包括初始化串口部分,值得注意的是:串口的波特率与时钟MCLK有很大关系,详见CPU用户手册。

配置好以后,便可以重新编译u-boot代码。将得到的u-boot.bin通过JTAG口下载到目标板后,如果能从串口输出正确的启动信息,就表明移植基本成功。实际过程中会由于考虑不周而需要多次修改。移植成功后,也可以添加一些其它功能(如LCD驱动等),在此基础上添加功能相对比较容易。

5 结束语

u-boot是一个功能强大的bootloader开发软件,适用的CPU平台及支持的嵌入式操作系统很多。本文是笔者在实际开发过程中根据相关资料进行摸索,并在成功移植了u-boot的基础上总结出来的。对于不同的CPU和开发板,其基本的方法和步骤是相同的,希望能对相关嵌入式系统的设计人员有所帮助。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

近日,米尔电子推出米尔基于NXP i.MX 93系列产品-MYC-LMX9X核心板及开发板。NXP i.MX 9系列在i.MX 6和i.MX 8系列产品市场验证的基础上,继承了前代产品的优点的同时,进一步提升了性能、资源...

关键字: 核心板 开发板 处理器

我们先实现 dmaion buffer 管理器,这里贴的代码省略了异常错误处理的逻辑,有个坑是 linux-4.9 和 linux-5.4 用法不一样,米尔电子的这个T113-i系统是linux-5.4,所以不兼容4.9...

关键字: 核心板 开发板

支持高达48V@5A的PD受电模式,达到目前USB PD最高标准。

关键字: 嵌入式 开发板

嵌入式开发平台是支撑嵌入式系统设计、开发和测试的重要基础环境,它集成了硬件设施、软件工具链、操作系统以及开发框架等一系列关键组件。本文将深入探讨嵌入式开发平台所具备的独特特点与优势,从硬件配置、软件环境、灵活性、可移植性...

关键字: 嵌入式开发平台 开发板

以前微处理器(MPU)与微控制器(MCU)是截然不同的两种设备,MPU支持丰富的软件系统,如Linux和相关的软件堆栈,而MCU通常将专注于裸机和RTOS。近年来,随着MCU的性能越来越高,MCU和MPU之间的区别变得越...

关键字: MCU MPU 开发板

新品播报!米尔电子发布了基于海思Hi3093高性能MPU的MYC-LHi3093核心板及开发板, 此款核心板支持openEuler embedded OS欧拉系统,丰富生态,可实现100%全国产自主可控。不仅如此,米尔基...

关键字: 核心板 PLC 开发板

米尔电子发布的瑞萨第一款MPU生态板卡——瑞米派(Remi Pi)自上市当天200套售罄,获得不少新老用户的青睐。为感谢大家的支持,米尔加推300套瑞米派活动,以补贴价198元回馈大家,抢完即止!

关键字: 瑞米派 树莓派 开发板

2023年12月,米尔电子联合战略合作伙伴全志科技,率先业内发布了国产第一款T527核心板及开发板,这款高性能、高性价比、八核A55的国产核心板吸引了广大客户关注,为积极响应客户需求,米尔基于全志T527核心板现已批量上...

关键字: 开发板 核心板 处理器

IEC61850是变电站自动化系统(SAS)中通信系统和分散能源(DER)管理的国际标准。它通过标准的实现,实现了智能变电站的工程运作标准化。使得智能变电站的工程实施变得规范、统一和透明,在电力和储能系统中应用非常广泛。

关键字: 开发板 核心板 智能变电站
关闭
关闭