当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]基于增强并行口EPP的便携式高速数据采集系统

针对基于EPP协议的并行端口设备开发的特点与趋势,开发了由A/D转换器AD1671和FIFO存储器ID7202构成的1.25MHz、12Bit的高速数据采集系统,并通过IDT7202与EPP的接口电路实现了采集数据的高速回传。介绍了EPP协议和该采集系统工作原理。

    关键词: 增强并行口(EPP)  先进先出存储器(FIFO)  A/D转换器AD1671

    利用传统的标准并行口(SPP)或RS232进行数据传输,其速度和灵活性受到很大限制。而增强型并行端口EPP(Enhanced Parallel Port)不但与SPP兼容,而且其最高传输速率可达ISA总线的能力(2MHz)。由于便携式计算机日益普及,基于EPP协议开发的便携式微机采集系统将会是一个发展趋势。

    通常,低速的数据采集系统可不需要板上的数据缓存区。但当采集速率较高时,数据的回传将占用CPU大量的时间,因而不可能进行其他的控制操作与数值处理,这时就需要足够的缓存区来存放数据。我们在设计高速数据采集系统时采用了FIFO(First In First Out) IDT7202?其管脚功能如图1所示。它不但提供了存储空间作为数据的缓冲,而且还在EPP并行总线和A/D转换器之间充当一弹性的存储器,因而无需考虑相互间的同步与协调。FIFO的优点在于读写时序要求简单,内部带有读写的环形指针,在对芯片操作时不需额外的地址信息。随着FIFO芯片存储量的不断增加和价格的不断下降,它将成为传统数据存储器件RAM、SRAM等的有力替代者。方案中的A/D转换器采用了Analog Device 公司的AD1671,最大采集速率可达1.25MHz、12Bit无漏码转换输出。

1 EPP协议简介

    EPP协议与标准并行口协议兼容且能完成数据的双向传输,它提供了四种数据传送周期:数据写周期;数据读周期;地址写周期;地址读周期。

    在设计中我们把数据周期用于便携机与采集板之间的数据传输,地址周期用于地址的传送与选通。表1列出了DB25插座在EPP协议中的各脚定义。

表1 EPP信号定义

EPP信号方向DB25对应脚描述
nWriteout1低电平写,高电平读
nDataSTBout14低有效,数据读写
nAddrSTBout17低有效,地址读写
AD[8:1]Bi2~9双向数据/地址线
GND 18~25地线
nResetout16低有效,外设复位
NINTRin10外设中断,对主机产生
   一个中断请求
nWaitin11握手信号,低表示可以开始一个
   读写周期,高表示可以
   结束一个读写周期
Userdfnin12/13/15根据不同外设灵活定义

    图2是一个数据写周期的例子。

    (1) 程序执行一个I/O写周期,写数据到Port4(EPP数据寄存器)。

    (2)nWrite变低,数据送到串行口上。

    (3)由于nWait为低,表示可以开始一个数据写周期,nDataSTB变低。


    (4)等待外设的握手信号(等待nWait变高)。

    (5)nDataSTB变高,EPP周期结束。

    (6)ISA的I/O周期结束。

    (7)nWait变低,表示可以开始下一个数据写周期。

    可以看到,整个数据传送过程发生在一个ISA I/O周期内,所以用EPP协议传送数据,系统可以获得接近ISA总线的传输率(500k~2M byte/s)。[!--empirenews.page--]

2 AD1671控制及采集系统工作原理

    图3是AD1671的AD转换时序图。

    AD1671在Encode信号上升沿开始A/D转换,Dav信号在本次转换完成前一定时间变低,直到Dav出现上升沿表示本次转换结束。为防止数字噪声耦合带来的误差,Encode信号应在Dav信号变低后50ns内变低。系统中通过8254计数器对晶振进行分频来给AD1671提供Encode信号,以满足其工作时序的需要。系统原理图如图4所示。系统初始化时,向8254的Clock0写入计数值,由此可以灵活改变采样间隔,同时写入Clock1的计数值用来控制采样的个数。晶振采用5MHz有源四脚晶振,D触发器实现触发功能,系统工作原理如下:


    系统初始化完成后,经地址译码器产生Add2信号,使D触发器状态翻转,由低变到高,8254计数使能端Gate0、Gate1变高,8254开始方式2的计数。当Clock0的计数时间到时,发出一个宽度为一时钟周期的负脉冲,经反向送入Encode,启动AD1671进行A/D转换。一次转换结束,利用Dav信号将转换的数据写入IDT7202,同时Clock1计数一次。当Clock1计数时间到后,发出一个脉冲,用来实现对D触发器的清零,使Gate0、Gate1变低,停止AD1671转换,完成一次系统的采集工作。

3 FIFO与EPP的接口电路

    图5是EPP与IDT7202的接口电路。

    此电路是基于EPP1.9设计的。nDataSTB与nAddSTB组合产生nWait回送信号,实现连锁握手。方案中分别用数据读周期、地址读周期对1#FIFO、2#FIFO进行读取。EPP模式设定后,对FIFO存储器的读取非常简单。通过产生一个单I/O读指令到“基址+4”,EPP控制器就会产生所需的选通信号,用EPP数据读周期传送数据。对“基址+3”的I/O操作,可产生地址周期信号。


    C语言指令如下:

    读一个字节数据:Data=Inportb(Base_Addr+4);

    读一个字节地址: Data=Inportb(Base_Addr+3);

    实际应用中FIFO的存取时间达到ns 级,EPP的速度也接近ISA总线的速率。上述接口电路属于高频,电路设计要注意消除干扰。FIFO的读写信源应尽量靠近FIFO,没用到的数据输入端应接地或VCC等。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

助力科研与检测新突破 上海2024年5月15日 /美通社/ -- 全球知名的科学仪器和服务提供商珀金埃尔默公司今日在上海举办了主题为"创新不止,探索无界"的新品发布会,集中展示了其在分析仪器领域的最...

关键字: 质谱仪 BSP DSC 气相色谱

上海2024年5月16日 /美通社/ -- 2024年5月10日至5月13日,富士胶片(中国)投资有限公司携旗下影像产品创新力作亮相北京P&E 2024。在数码相机展览区域,全新制定的集团使命"为世界绽...

关键字: 富士 数码相机 影像 BSP

贝克曼库尔特目前已成为MeMed Key免疫分析平台和MeMed BV检测技术的授权经销商 在原有合作的基础上,继续开发适用于贝克曼库尔特免疫分析仪的MeMed BV检测 加州布瑞亚和以色列海法2024年5月16日...

关键字: BSP IO 检测技术 免疫分析仪

英国英泰力能的燃料电池是可产业化的产品解决方案 英国首个专为乘用车市场开发的燃料电池系统 在 157kW 功率下,此燃料电池比乘用车的其他发动机更为强大 &...

关键字: ENERGY INTELLIGENT 氢燃料电池 BSP

深爱人才,共赴"芯"程 深圳2024年5月15日 /美通社/ -- 5月11日,深圳国资国企"博士人才荟"半导体与集成电路产业专场活动在深圳市重投天科半导体有限公司(简...

关键字: 半导体 集成电路产业 BSP 人工智能

武汉2024年5月15日 /美通社/ -- 北京时间4月26日-5月4日,2024 VEX 机器人世界锦标赛于美国得克萨斯州达拉斯市举办。本届 VEX 世锦赛为期九天,设有 VIQRC 小学组/初中组、V5RC 初中组/...

关键字: 机器人 BSP RC POWERED

上海2024年5月15日 /美通社/ -- 由生成式人工智能(AI)驱动的临床阶段生物医药科技公司英矽智能宣布,与复星医药(600196.SH;02196.HK)合作开发的潜在"全球首创"候选药物IS...

关键字: ISM BSP PC 人工智能

上海2024年5月13日 /美通社/ -- 5月8日,浦东新区国资委组织陆家嘴集团等9家区属企业与立邦中国召开合作交流会,旨在贯彻落实浦东新区区委、区政府工作要求,进一步放大进博会溢出带动效应,持续扩大区属企业与进博会重...

关键字: BSP 数字化 自动化立体仓库 智慧园区

上海2024年5月13日 /美通社/ -- 在数字化时代,高效的税务管理和ERP系统成为企业发展的关键。为了满足这一需求商应信息科技与Exact Software 易科软件就金四全电票税系统与ERP系统集成及商务合作建立...

关键字: AC 软件 BSP 数字化

北京2024年5月13日 /美通社/ -- 5月11日,鲲鹏昇腾开发者大会2024期间,华为举办"昇思AI框架及大模型技术论坛",软通动力数字基础设施与集成事业部总经理谢睿受邀出席、软通动力...

关键字: AI 模型 BSP 精度
关闭
关闭