当前位置:首页 > 嵌入式 > 嵌入式动态
[导读] 网络上充斥着大量的图片,不过,这些图片的质量不都是好的,有些是收带宽限制人为压缩的,有的是拍摄设备不太好,拍的不够清晰,有的是上传到网络上自动压缩的,这些都使得

 

网络上充斥着大量的图片,不过,这些图片的质量不都是好的,有些是收带宽限制人为压缩的,有的是拍摄设备不太好,拍的不够清晰,有的是上传到网络上自动压缩的,这些都使得画质变差,如今高分辨率显示屏幕正在家庭和移动设备上普及,因此,把低分辨率图片转化为高清晰版本,并可在多种设备上查看和分享,正在成为一项巨大的需求。日前,Google 推出了一项新技术 RAISR,其全称是“Rapid and Accurate Image Super-Resolution”,意为“快速、精确的超分辨率技术”。

RAISR 这项技术能利用机器学习,把低分辨率图片转为高分辨率图片。它的效果能达到甚至超过现在的超分辨率解决方案,同时速度提升大约 10 至 100 倍,且能够在普通的移动设备上运行。而且,Google 的技术可以避免产生混叠效应(aliasing artifacts)。

之前已经具有透过升采样方式,把低分辨率图片重建为尺寸更大、像素更多、更高画质图片的技术。最广为人知的升采样方式是线性方法,即透过把已知的像素值进行简单、固定的组合,以添加新的像素值。因为使用固定的线性过滤器(一个恒定卷积核对整个图片的无差别处理),该方法速度很快。但是它对于重建高清作品里生动的细节有些力不从心。正如下面这张图片,升采样的图片看起来很模糊,很难称得上画质提升。

 

▲ 左为原始图片;右为升采样处理后图片。

对于 RAISR,Google 另辟蹊径得采用机器学习,用一对低分辨率、高分辨率图片训练该程序,以找出能选择性应用于低分辨率图片中每个像素的过滤器,这样能生成媲美原始图片的细节。目前有两种训练 RAISR 的方法:

第一种是“直接”方式,过滤器在成对高、低分辨率图片中直接学习。

第二种方法需要先对低分辨率图片应用低功耗的的升采样,然后在升采样图片和高分辨率图片的组合中学习过滤器。

“直接”方式处理起来更快,但第二种方法照顾到了非整数范围的因素,并且更好地利用硬件性能。

无论是哪种方式,RAISR 的过滤器都是根据图像的边缘特征训练的:亮度和色彩梯度、平实和纹理区域等。这又受到方向(direction,边缘角度)、强度(strength,更锐利的边缘强度更高)和黏性(coherence,一项量化边缘方向性的指标)的影响。以下是一组 RAISR 过滤器,从一万对高、低分辨率图片中学习得到(低分辨率图片经过升采样)。该训练过程耗费约 1 小时。

 

注:3 倍超分辨率学习,获得的 11×11 过滤器集合。过滤器可以从多种超分辨率因素中学习获得,包括部分超分辨率。注意当图中边缘角度变化时,过滤器角度也跟着旋转。相似的,当强度提高时,过滤器的锐利度也跟着提高;黏性提高时,过滤器的非均相性(anisotropy)也提高。

从左至右,学习得到的过滤器与处理后的边缘方向有选择性的呼应。举例来说,最底一行中间的过滤器最适合强水平边缘(90 度梯度角),并具有高黏性(直线的而非弯曲的边缘)。如果这个水平边缘是低对比度的,那么如同图中最上一行,另一个过滤器就被选择。

实际使用中,RAISR 会在已经学习到的过滤器列表中选择最合适的过滤器, 应用于低分辨率图片的每一个像素周围。当这些过滤器被应用于更低画质的图像时,它们会重建出相当于原始分辨率的细节,这大幅优于线性、双三(bicubic)、兰索斯(Lancos)解析方式。

 

▲ RAISR 演算法运行图式下:原始图像(左),2 倍双三解析(中),RAISR 效果(右)。

一些运用 RAISR 进行图片增强的范例:

 

▲ 上:原始图片,下:RAISR 2 倍超分辨率效果。

 

▲ 左:原始图片,右:RAISR 3 倍超分辨率效果。

超分辨率技术更复杂的地方在于如何避免混叠效应,例如龟纹(Moire patterns)和高频率内容在低分辨率下渲染产生的锯齿(对图像人为降级的情形)。这些混叠效应的产物会因对应部分的形状不同而变化,并且很难消除。

 

▲ 左:正常图像;右:右下角有龟纹(混叠效应)的图像。

线性方法很难恢复图像结构,但是 RAISR 可以。下面是一个例子,左边是低分辨率的原始图片,左 3 和左 5 有很明显的空间频率混淆(aliased spatial frequencies),而右侧的 RAISR 图像恢复了其原始结构。RAISR 的过滤器学习方法还有一项重要的优点:用户可以把消除噪音以及各类压缩演算法的产物做为训练的一部分。当 RAISR 被提供相应的范例后, 它可以在图片锐化之外学会消除这些效果,并把这些功能加入过滤器。

 

▲ 左:有强混叠效应的原始图片;右:RAISR 处理后效果。

超分辨率技术利用不同的方法已经有了不少进展。如今,透过把机器学习与多年来不断发展的成像技术相结合,图像处理技术有了长足的进步,并带来许多好处。举例来说,除了放大手机上的图片,用户还可以在低分辨率和超高清下捕捉、储存、传输图像,使用更少的移动网络数据和储存空间,而且不会产生肉眼能观察到的画质降低。

小结:自从乔布斯 2010 年在 iPhone 4s 上推出“视网膜屏幕”概念之后,数码产品市场开启了一场超高清显示革命。如今,家用显示器逐步走向 4K,各大手机厂商也竞相推出 2K 旗舰机。但 2K、4K 内容的缺乏一直是困扰行业发展的痛点。之前的超分辨率技术受成本、硬件限制,主要应用于专业领域,未能大范围普及。

此次 Google RAISR 大幅降低了图像增强的时间成本和硬件要求,有望实现超分辨率技术在消费领域的应用,把充斥网络的低画质图片转化为高清图片,大幅提高视觉效果和用户体验。十分期待将来 RAISR 在移动设备的应用,例如把消费者手机拍摄的照片转化为媲美单反画质的高清美图。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

芯原的SR2000 IP可显著提升终端图像画质和显示分辨率,并大幅降低图像的传输带宽

关键字: 智能显示设备 超分辨率技术

IMG Series4 NNA帮助先进的AI软件大幅提升图像和视频的分辨率

关键字: Imagination 深度学习 超分辨率技术

Chrome OS是一款Google开发的基于PC的操作系统。 Google Chrome OS是一款基于Linux的开源操作系统。Google在自己的官方博客表示,初期,这一操作系统将定位于上网本、紧凑型以及低成本电脑...

关键字: Chrome OS google 内核

那一抹风情(2583246961) 2021/6/26 19:45:24五六年前,计算机可是被调剂的专业想想朱老师会怎么做(2833716637) 2021/6/26 19:48:09那时候我听说机械可以赚一万多想想朱老...

关键字: go google pi

Google I/O 开发者大会去年因为疫情而取消,今年采取线上形式强势回归。在没有开发者在场的 Google 园区内,Google CEO 桑达尔 · 皮查伊(Sundar Pichai)宣布推出多项全新技术,除了能够...

关键字: google TPU 谷歌

11月5日,华为于对瑞典邮政和电信管理局(PTS) 10月20日通过的行政决定提出上诉,要求斯德哥尔摩行政法院发布临时禁令,立即停止执行此行政决定,并撤销该决定中关于华为的限制性要求。

关键字: 华为 google 电信

2020年10月消息,据XDA-Developers报道,该公司在2019年首次宣布的谷歌助手驾驶模式已经开始出现在一些Android设备上。大约两周前,有用户首次报告在谷歌地图中看到一个新的导航界面,该用户界面看起来与...

关键字: google assistant Android

Google解释了其开发者政策中的新变化,并承诺将简化在Android 12上使用第三方应用商店的过程。 该公告解决了有关Android应用程序开发的最新问题,并且Android用户已经可以通过第三方商店(例如Samsu...

关键字: android12 google play 简化

如果你想把通话记录作为Android手机的标准功能

关键字: Android one google phone

去年,在android10的第二版中,谷歌增加了类似于Facebook Messenger的API泡沫支持。L'api是为开发人员设计的,开发人员可以使用自己的应用程序来支持函数准备。泡泡很好。气泡不能进入最终版...

关键字: google android11 气泡
关闭