当前位置:首页 > 物联网 > 网络层
[导读]电力系统是时间相关系统,无论电压、电流、相角、功角变化,都是基于时间轴的波形。近年来,超临界、超超临界机组相继并网运行,大区域电网互联,特高压输电技术得到发展。电网安全稳定运行对电力自动化设备提出了新的要求

电力系统是时间相关系统,无论电压、电流、相角、功角变化,都是基于时间轴的波形。近年来,超临界、超超临界机组相继并网运行,大区域电网互联,特高压输电技术得到发展。电网安全稳定运行对电力自动化设备提出了新的要求,特别是对时间同步,要求继电保护装置、自动化装置、安全稳定控制系统、能量管理系统和生产信息管理系统等基于统一的时间基准运行,以满足同步采样、系统稳定性判别、线路故障定位、故障录波、故障分析与事故反演时间一致性要求。确保线路故障测距、相量和功角动态监测、机组和电网参数校验的准确性,以及电网事故分析和稳定控制水平,提高运行效率及其可靠性。未来数字电力技术的推广应用,对时间同步的要求会更高。

1电力系统时间同步概况

目前,电力系统中的时间同步处于变电站内GPS统一的状态,甚至有很多老旧变电站还没有实现GPS统一,需要对时的每套设备都配置一套独立的时钟系统。由于GPS设备品牌不同,性能不统一,造成站内、站与站之间时间不统一。这些时间接收系统相互间不通用。无法互为备份,使得整个系统的可靠性无法保证。为了逐步实现全电网的同一时间,有必要在发电厂、变电站、控制中心、调度中心建立集中和统一的电力系统时间同步系统,而且该系统应能基于不同的授时源建立时间同步并互为热备用。

2电力系统对时间同步的需求

电力自动化设备对时间同步精度有不同的要求。一般而言,电力系统授时精度大致分为4类:

(1)时间同步准确度不大于1μs:包括线路行波故障测距装置、同步相量测量装置、雷电定位系统、电子式互感器的合并单元等。

(2)时间同步准确度不大于1ms:包括故障录波器、SOE装置、电气测控单元、RTU、功角测量系统(40μs)、保护测控一体化装置、事件顺序记录装置等。

(3)时间同步准确度不大于10ms:包括微机保护装置、安全自动装置、馈线终端装置(FTU)、变压器终端装置(TTU)、配电网自动化系统等。

(4)时间同步准确度不大于1s:包括电能量采集装置、负荷,用电监控终端装置、电气设备在线状态检测终端装置或自动记录仪、控制,调度中心数字显示时钟、火电厂和水电厂以及变电站计算机监控系统、监控与数据采集(sCADA),EMS、电能量计费系统(PBS)、继电保护及保障信息管理系统主站、电力市场技术支持系统等主站、负荷监控,用电管理系统主站、配电网自动化,管理系统主站、调度管理信息系统(DMlS)、企业管理信息系统(MlS)等。

3目前电力系统内时间同步技术

电力系统设备常用的对时方式有以下4种:

(1)脉冲对时

也称硬对时,是利用脉冲的准时沿(上升沿或下降沿)来校准被授时设备。常用的脉冲对时信号有1PPS和分脉冲(1PPM),有些情况下也会用时脉冲(1PPH),其中1PPM和1PPH也可以通过累计1PPS得到。

脉冲对时的优点是授时精度高,使用被动点时,适应性强;缺点是只能校准到秒(用1PPS),其余数据需要人工预置。

(2)串口报文对时

也称软对时,是利用一组时间数据(年、月、日、时、分、秒)按一定的格式(速率和顺序等),通过串行通信接口发送给被授时装置,被授时装置利用这组数据预置其内部时钟。常用的串行通信接口为RS-232和RS-422/RS-485。

串口报文对时的优点是数据全面,不需要人工预置;缺点是授时精度低,报文的格式需要授时和被授时装置双方约定。

目前,很多场合采用以上2种方式的组合方式,从而可以充分利用两者的优点,克服两者的缺点。

(3)时间编码方式对时

为了解决前2种对时方式的矛盾,在实际应用中常采取2种对时方式结合的方法,即串口+脉冲。这种方式的缺点是需要传送2个信号。为了更好地解决这个矛盾,采用国际通用时间格式码,将脉冲对时的准时沿和串口报文对时的那组时间数据结合在一起,构成一个脉冲串,来传输时间信息。被授时设备可以从这个脉冲串中解析出准时沿和一组时间数据。这就是目前常用的IRIG-B码,简称B码。

时间编码方式对时的优点是数据全面。对时精度高,不需要人工预置;缺点是编码相对复杂。

(4)网络方式对时

网络方式对时基于网络时间协议(NTP)、精确时间协议(PTP)。目前,简单网络时间协议(SNTP)应用较多。网络时钟传输的是以1900年1月1 日0时0分0秒算起时间戳的用户数据协议(UDP)报文。用64位表示,前32位为秒,后32位为秒等分数。网络中报文往返时间是可以估算的,因而采用补偿算法可以达到精确对时的目的。网络授时方式可以为接入网络的任何系统提供对时,其中NTP授时精度可达到50ms,PTP授时精度可达到 1μs,SNTP授时精度可达到1s。

网络方式对时的优点是基于现有网络,物理实现方便;缺点是高精度补偿算法复杂。

上述4种授时方式各有优点。实际应用中,在满足同步精度要求的前提下,考虑到经济性,采用组合方式授时,即在一套运行管理系统中并存多种方式,可以充分应用授时时钟能够提供的信息。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在现代社会,电力系统如同支撑经济社会运行的 “主动脉”,其安全稳定运行至关重要。高压并联电容器作为电力系统中的关键设备,对维持电力系统的高效运行发挥着不可或缺的作用。

关键字: 电容器 电力系统 电气设备

在现代电力系统中,安全与稳定是保障生产生活正常运转的基石。然而,电弧光故障如同潜伏在暗处的 “杀手”,时刻威胁着电力系统的安全。智能电弧光保护装置作为应对这一威胁的有力武器,正逐渐成为电力系统稳定运行不可或缺的 “防火墙...

关键字: 电力系统 电弧光 保护装置

上海2025年7月21日 /美通社/ -- 本文围绕跨域时间同步技术展开,作为智能汽车 "感知-决策-执行 -交互" 全链路的时间基准,文章介绍了 PTP、gPTP、CAN 等主流同步技术及特点,并以...

关键字: 时钟 时间同步 同步技术 智能汽车

电能作为一种重要的能源,其质量的优劣直接关系到电力系统的安全稳定运行以及各类用电设备的正常工作。理想的电能应是频率稳定、电压幅值恒定且波形为正弦波的交流电。然而,在实际的电力系统中,由于各种因素的影响,电能质量往往会出现...

关键字: 电能 电力系统 谐波

在现代电力系统中,随着电力电子技术的飞速发展,各种非线性用电设备广泛应用,如变频器、整流器、开关电源等。这些设备在运行过程中会向电网注入大量的高次谐波,对电力系统的安全稳定运行、电能质量以及电气设备的正常工作都带来了严重...

关键字: 高次谐波 电力系统 电能质量

新款大功率电力保险丝符合 UL 248-14 与 IEC 60127-1 标准,并具备高达 500 V 的额定电压,以满足新一代电力系统多变的需求

关键字: 电力系统 电力保险丝 能源储存系统

Bourns® PCP300-T414250S 电流变压器具备高磁导率和低能量损耗,为电力系统提供卓越的高频电流检测

关键字: 变压器 电力系统 电能质量分析

推动产学研深度融和 探索新型电力系统绿色路径 上海 2025年6月13日 /美通社/ -- 6月12至14日,“2025台达电力电子新技术研讨会”在苏州吴江举办,来自14所高校400多位专家与师生,聚焦于推动产学...

关键字: 研讨会 电力电子 电力系统 电力电子技术

上海 2025年5月28日 /美通社/ -- 2024年12月15日,DEKRA德凯温州低压实验室正式通过沙特电力公司(SEC)的全面评估,成功入选其认可的独立测试实验室名...

关键字: 电力 SE 低压电器 电力系统

延时继电器其选型需综合考虑延时方式、工作原理、关键参数及使用场景,确保设备在特定环境下稳定运行。以下从参数解析、性能评估、场景适配三个维度,提供延时继电器选型的系统性指导。

关键字: 延时继电器 电力系统
关闭