当前位置:首页 > 单片机 > 单片机
[导读] 一、用法经常会看到类似如下的宏定义语句,用于对已经初始化后的 IO 口输出高、低电平。#define SET_BL_HIGH() GPIOA->BSRR=GPIO_Pin_0#define SET_BL_LOW() GPIOA->BRR=GPIO_Pin_012其作用类似于如下两个库函数,v

 一、用法

经常会看到类似如下的宏定义语句,用于对已经初始化后的 IO 口输出高、低电平。

#define SET_BL_HIGH() GPIOA->BSRR=GPIO_Pin_0

#define SET_BL_LOW() GPIOA->BRR=GPIO_Pin_012

其作用类似于如下两个库函数,

void GPIO_SetBits(GPIO_Typedef* GPIOx, uint16_t GPIO_Pin)

void GPIO_ResetBits(GPIO_Typedef* GPIOx, uint16_t GPIO_Pin) 12

而且实际上这两个库函数就是通过修改BSRR,BRR寄存器的值来实现对 IO 口设置的。如下便是输出高电平的函数体:

void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)

{

/* Check the parameters */

assert_param(IS_GPIO_ALL_PERIPH(GPIOx));

assert_param(IS_GPIO_PIN(GPIO_Pin));

GPIOx->BSRR = GPIO_Pin;

}12345678

因此,使用宏或者库函数本质上都是一样的。区别在于使用宏更快,而使用函数更灵活。

二、解释

BSRR 和 BRR 都是 STM32 系列 MCU 中 GPIO 的寄存器。 BSRR 称为端口位设置/清楚寄存器,BRR称为端口位清除寄存器。

BSRR 低 16 位用于设置 GPIO 口对应位输出高电平,高 16 位用于设置 GPIO 口对应位输出低电平。

BRR 低 16 位用于设置 GPIO 口对应位输出低电平。高 16 位为保留地址,读写无效。

所以理论上来讲,BRR 寄存器的功能和 BSRR 寄存器高 16 位的功能是一样的。也就是说,输出低电平的宏语句,可以有如下两种写法。

#define SET_BL_LOW() GPIOA->BRR=GPIO_Pin_0

等价于

#define SET_BL_LOW() GPIOA->BSRR=GPIO_Pin_0 << 16 123

这么来看的话,其实 BRR 寄存器是比较多余的。而实际上,在最新的 STM32F4 系列 MCU 的 GPIO 寄存器中,已经找不到 BRR 寄存器了,仅保留了 BSRR 寄存器用于实现端口输出高低电平。因此,在 STM32F4 系列 MCU 的库函数中,对 GPIO 口输出高低电平的函数为如下形式:

void HAL_GPIO_WritePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState)

{

/* Check the parameters */

assert_param(IS_GPIO_PIN(GPIO_Pin));

assert_param(IS_GPIO_PIN_ACTION(PinState));

if(PinState != GPIO_PIN_RESET)

{

GPIOx->BSRR = GPIO_Pin;

}

else

{

GPIOx->BSRR = (uint32_t)GPIO_Pin << 16U;

}

}123456789101112131415

可见,不管是输出高还是输出低,都是对 BSRR 寄存器的操作。

三、BSRR、BRR、 ODR 之间的关系

配置 BSRR , BRR 是为了对端口输出进行配置,而 ODR 寄存器也是用于输出数据的寄存器,一个 ODR 寄存器控制了一组(16位)的 GPIO 输出。因此,对 ODR 进行修改也可以到达对 IO 口输出进行配置。

但是,由于对 ODR 寄存器的读写操作必须以 16 位的形式进行。因此,如果使用 ODR 改写数据以控制输出时,须采用“读-改-写”的形式进行。

假设需要对 GPIOA_Pin_6 输出高电平。采用改写 ODR 寄存器的方式时,使用“读-改-写”操作,代码如下:

uint32_t temp;

temp = GPIOA->ODR;

temp = temp | GPIO_Pin_6;

GPIOA->ODR = temp;1234

而使用改写 BSRR 寄存器时,仅需要使用如下语句:

GPIOA->BSRR = GPIO_Pin_6;1

这是因为在修改 ODR 时,为了确保对端口 6 的修改不会影响到其他端口的输出,需要对端口的原始数据进行保存,之后再对端口 6 的值进行修改,最后再写入寄存器。而对 BSRR 的操作,是写 1 有效,写 0 不改变原状态,因此可以对端口 6 置 1,其他位保持为 0。BSRR 为 1 的位,会修改相应的 ODR 位,从而控制输出电平。

对 BSRR 的操作可以实现原子操作。因此在设置单个 IO 口输出时,使用 BSRR 进行操作会更加方便。

但也有例外的时候,在需要对单个IO口进行 Toggle 操作时(即对当前输出取反输出,当前输出为高则输出低,当前输出低则输出高),官方的库函数就是直接对 ODR 寄存器进行操作的。代码如下:

void HAL_GPIO_TogglePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)

{

/* Check the parameters */

assert_param(IS_GPIO_PIN(GPIO_Pin));

GPIOx->ODR ^= GPIO_Pin;

}1234567

这是因为,0 和 1 与 1 进行异或操作被取反,0 和 1 与 0 进行异或操作保持原值。如下:

0 ^ 1 = 1

1 ^ 1 = 0

0 ^ 0 = 0

1 ^ 0 = 1

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

一直以来,MCU都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来MCU的相关介绍,详细内容请看下文。

关键字: MCU 半导体 寄存器

电动剃须刀作为一种常见的小家电在人们的日常生活中有着广泛的应用,每个男人几乎都会配备一个。电动剃须刀相比传统剃须刀就省事多了,刮得干净效率又高。而且电动剃须刀也更不容易刮伤,相比之下更安全。芯岭技术就有一种基于单片机的智...

关键字: 芯岭技术 方案开发 解决方案 单片机

不知道大家有没有看过萌萌的拍拍灯,颜值超高,还很实用。首先它操作简便,轻拍即可开关灯,光线柔和不刺眼。只要轻轻拍打灯面,暖黄色的灯光就会亮起,在起夜时能帮我们照明,且灯光微弱不刺眼,不用担心会影响舍友休息。还有延时关灯、...

关键字: 芯岭技术 方案开发 解决方案 单片机

PY32F002A 系列微控制器采用高性能的 32 位 ARM® Cortex®-M0+内核,宽电压工作范围的 MCU。嵌入高达 20Kbytes flash 和 3Kbytes SRAM 存储器,最高工作频率 24MH...

关键字: MCU 单片机

摘要:以提高垃圾桶内有效利用空间为目标,采用HT66F70A单片机作为主控制器,设计了一种智能社区垃圾桶压缩系统,其包括自动压缩模块、无线收发模块、自动报警模块、重力检测模块、超声波测距模块、红外感应模块以及外围辅助电路...

关键字: 垃圾桶 单片机 压缩系统

1-汇编编写的启动文件 startup_stm32f10x_hd.s:设置堆栈指针、设置PC指针、初始化中断向量表、配置系统时钟、对用C库函数_main最终去到C的世界

关键字: STM32 固件库

I-care 集团在Wi-care智能工业预测性维护系统中采用STM32WB5MMGH6无线模块

关键字: 意法半导体 STM32 智能无线模块

XL32F003系列微控制器采用高性能的32位ARM*Cortex*-M0+内核,宽电压工作范围的MCU。嵌入高达64 Kbytes flash和8 Kbytes SRAM存储器,最高工作频率32 MHz。包含多种不同封...

关键字: 方案开发 解决方案 单片机

充电宝一般都是由锂电池芯作为储电模块。差别于商品內部配备的电池,也叫外挂软件充电电池。配备多种多样的开关电源转换头,具备大空间、多功能、体型小、长寿命和可以信赖 等特性,是可随时为手机上、MP3、Mp4、手机上、PDA、...

关键字: 芯岭技术 方案开发 解决方案 单片机

该电热水壶方案是基于单片机控制,该电热水壶是在普通水壶的基础上,增加了温控功能,可以按需求加热到需要的水温。根据不同的水源采用不同的加热方式,40℃适合温奶、60℃适合蜂蜜水、80℃适合花茶、90℃适合咖啡、100℃烧开...

关键字: 芯岭技术 方案开发 解决方案 单片机

编辑精选

技术子站

关闭