当前位置:首页 > 电源 > 电源-LED驱动
[导读]LED在生活中处处可见,有显示屏的,也有照明的,但是有很多人不知道LED灯需要LED驱动器来驱动,在过去的十年里,汽车电子产品有了突飞猛进的发展,车载电子控制、车载信息服务以及娱乐系统不管是在数量上还是在精细程度上都有了显著的提高。本文将重点探讨这种成长的主要组成部分之一,即:目前以及下一代汽车中LED照明使用率的飞速提高。这种新型照明领域给汽车电子产品的设计师和制造商均带来了新的挑战。了解这些挑战并找到可行的解决方案是最为重要的,因为与这些照明系统相关联的发展似乎是没有止境的。

LED在生活中处处可见,有显示屏的,也有照明的,但是有很多人不知道LED灯需要LED驱动器来驱动,在过去的十年里,汽车电子产品有了突飞猛进的发展,车载电子控制、车载信息服务以及娱乐系统不管是在数量上还是在精细程度上都有了显著的提高。本文将重点探讨这种成长的主要组成部分之一,即:目前以及下一代汽车中LED照明使用率的飞速提高。这种新型照明领域给汽车电子产品的设计师和制造商均带来了新的挑战。了解这些挑战并找到可行的解决方案是最为重要的,因为与这些照明系统相关联的发展似乎是没有止境的。下面来介绍驱动器的相关知识。

LED驱动芯片

LED照明

诸如小外形尺寸、低功耗和快速接通时间等优势开创了高亮度LED被当今汽车所广泛采用的局面。LED在汽车中的初始应用是中央高架停车灯(CHMSL);这些应用使用红光LED来提供一个非常扁薄的照明阵列,该照明阵列易于安装,而且永远不需要更换。

传统上,白炽灯泡是最为经济的光源,而且仍然被许多汽车所采用。然而,随着可用照明空间的日益缩小以及对照明光源使用寿命要求的不断提高,由LED所提供的灯光色彩和设计方案正在迅速取代白炽灯泡应用。即使是传统的CCFLTFT-LCD背光源应用,目前也在逐渐地被白光LED阵列所取代。

更有甚者,人们还在利用一种电“可操纵”型高电流LED阵列来开发车前灯,而该领域一直是被卤素/氙灯丝设计所把持的。几乎所有的汽车照明应用(包括车身内部/外部照明和背光照明应用)都将逐步过渡为采用LED。采用LED的好处具有诸多积极的含意。首先(也许是最重要的一点),它永远不需要更换,因为其长达100,000小时的固态寿命(服役年限:11年半)比汽车的使用寿命还要长。这使得汽车制造商能够把它们永久性地嵌入车舱内的照明系统中,而无需像以往那样留有用于更换灯丝灯泡的入口。由于LED照明系统不需要白炽灯泡所要求的安装深度或面积,因此还可使汽车的造型发生显著的变化。LED的另一项优势是其具有低功耗,因而能够使得耗油量有所减少。

汽车LED照明的设计参数

为了确保最佳的性能和长久的工作寿命,LED需要一个有效的驱动电路。这些特殊的驱动电路必须能够从一根相当苛刻的汽车电源总线获取工作电源,而且还应兼具成本和空间“效益性”。为了维持其长久的工作寿命,一定不得超过LED的电流和温度限值。表1罗列了针对一个高电流白光LED的典型正向电压与驱动电流的相互关系。

在单个LED至三个(串联)LED的应用中,将需要一个降压型LED驱动器(比如:凌力尔特的LT3475),用于把汽车总线电压(标称值为12V)降至一个更加合适的LED电压,根据应用的LED彩色和亮度要求的不同,该LED电压的变化范围可在2.68V至4.88V(每个LED)之间。与此相反,在诸如刹车灯等需要多个由多达8个串联LED组成的LED串的应用中,所需的输出电压为21V至39V,所以必需采用一个升压型LED驱动器(例如:凌力尔特的LT3496)。凌力尔特公司提供的所有LED驱动器均采用了电流模式架构,旨在输送恒定的电流。

如欲在输入电压不规则的情况下产生恒定的LED亮度,就必须从这些驱动器IC获得一个恒定的电流源。一个内部检测电阻器用于监视输出电流,以实现准确的电流调节。在一个很宽的电流范围内(35mA至1A)保持了高输出电流准确度,从而实现了宽调光范围。由于凌力尔特的高电流LED驱动器是电流模式稳压器,因此它们并不直接调整电源开关的占空比,而是由反馈环路来控制每个周期中流经开关的峰值电流。与电压模式控制相比,电流模式控制改善了环路的动态性能,并提供了逐周期电流限制功能。

在许多应用(特别是背面照明和车内照明)中,都有可能需要进行调光控制,因而要求驱动器IC提供一种用于调节输出电流/LED亮度的简单方法。利用合适的驱动器IC,即可通过一个PWM信号、DC电压或外部NMOS晶体管来完成调光操作,调光范围可高达3000:1。

最后,车载电子产品可能对噪声很敏感,尤其是导航系统、无线电路和AM无线电波段接收机。为了最大限度地降低发生噪声干扰的可能性,凌力尔特在其LED驱动器IC中采用了恒定频率开关拓扑结构。此外,用户还可在200kHz至2MHz的范围内设置开关频率,以使开关噪声远离关键频段(比如:AM无线电波段)。高开关频率还允许使用小的电感器和陶瓷电容器,从而最大限度地缩减了解决方案的尺寸和成本。

双LED应用

许多嵌入式高电流LED应用将包括单个或两个高电流(ILED的范围从1A至1.5A)LED。这些应用包括车内照明(比如:车顶灯、地图灯、储物盒照明灯)和车外照明(比如:车门门槛灯或“地面照明”灯)。根据应用的不同,它们可以采用彩色LED(用于车载仪器的背面照明)或白光LED(用于普通照明)。由于这些LED通常具有一个3V至4V的正向电压,并由一根12V至14V的汽车总线来供电,因此需要采用一个降压型转换器(例如:LT3475)。

LT3475是一款双通道、36V、2MHz降压型DC/DC转换器,专为用作恒定电流双LED驱动器而设计(见图1)。每个通道具有一个内部检测电阻器和调光控制功能,从而使其非常适合于驱动那些需要高达1.5A电流的LED。一个通道的开关操作与另一个通道异相180°,因而使得两个通道的输出纹波均有所减小。每个通道均独立地在一个50mA至1.5A的宽电流范围内保持了很高的输出电流准确度,而独特的TrueColorPWMTM电路提供了一个3000:1的调光范围,且未发生任何的色偏移(这种现象在LED电流调光中很常见)。

凭借其4V至36V(瞬态电压高达40V)的宽输入电压范围,LT3475成为了汽车电源系统的理想选择。其开关频率可被设定在200kHz至2MHz之间,因而允许使用纤巧型电感器和陶瓷电容器,并使开关噪声远离AM无线电波段。再加上采用了一种耐热增强型TSSOP-20封装,该器件提供了一款适合于驱动高电流LED的紧凑型解决方案。

LT3475采用高压侧检测,实现了LED负极的接地连接,从而免除了大多数应用中所需的一根接地线。它还具有一个用于每个通道的集成升压二极管,因而进一步地缩减了解决方案的占板面积和成本。另外的特点包括LED开路和短路保护。

刹车灯

迄今为止,LED在汽车中最为常见的应用是中央高架停车灯(CHMSL)。截止2006年底,至少有60%的汽车都安装了LED型CHMSL。其好处包括较快的照明速度、更高的效率、更长的工作寿命,而且,非常扁薄的红光LED阵列还具有设计/安装上的简易性。LED能够在不到1ms的时间里达到全照度(而传统的灯泡则需要长达200ms的时间才能产生其最大亮度),这样,后方车辆的驾驶者识别刹车灯的时间将大为缩短,从而降低了发生追尾碰撞事故的概率。

而且,与白炽灯泡相比,功耗也下降了80%之多,最终起到了节省耗油量的效果。其有效使用期限将轻而易举地超过车辆的寿命,因而免除了更换的需要。除了CHMSL之外,有些汽车和摩托车还在主刹车灯中用LED替代了白炽刹车灯。

为了实现这些LED刹车灯的性能和工作寿命的最大化,应采用一种能够驱动这些刹车系统所需的红光LED串的合适LED驱动器,这是必不可少的。凌力尔特的LT3486便是专为此类汽车应用而开发的。LT3486是一款双通道升压型DC/DC转换器(如图2所示),专为从一根12V至14V汽车总线以恒定的电流来驱动多达16个LED(每个转换器驱动8个串联LED)而设计。采用LED串联的方式能够提供相等的LED电流,从而获得均匀的LED亮度。在需要的时候,两个独立的转换器还能够驱动不对称的LED串。

两个LED串的调光也可通过各自的CTRL引脚来单独地控制。通过把一个PWM信号馈送至各自的PWM引脚,一个内部PWM调光系统可使调光范围扩展至高达1000:1。LT3486的工作频率可由一个外部电阻器设置在200kHz至2MHz的范围内。一个200mV的低反馈电压(2%准确度)最大限度地减少了电流设定电阻器中的功率损耗,旨在提升效率。另外的特点包括LED断接时的输出电压限制。LT3486提供了一款占板面积非常紧凑的解决方案,并可采用节省空间的16引脚DFN(5mmx3mmx0.75mm)封装或16引脚耐热增强型TSSOP封装。

本文小结

由于LED照明在当今和未来汽车中的普及速度空前提高,因此对高电流LED汽车应用中的LED驱动器IC产生了许多非常特殊的性能要求。LED驱动器必须提供恒定的电流,以保持均匀的亮度(而不受输入电压或LED正向电压变化的影响),且必须实现高效运作。它们还必须能够承受汽车电源总线相当苛刻的电特性。另外,这些应用还需要占板面积非常紧凑和散热效率很高的解决方案。面对这些汽车设计要求,凌力尔特公司开发出了旨在解决上述汽车难题的完整高电流LED驱动器产品系列。以上就是小编整理的关于LED驱动器的相关知识,小编能力有限,但是在每次设计之后会继续分享设计感受。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在许多无线基站应用中,隔离电源转换器的电源是通过 -48 V 电源提供的。通信基站使用-48V电源很大部分有历史原因,历史上,通信行业设备一直使用-48V直流供电。-48V也就是正极接地。

关键字: GSM 电流 电压

实验通过光耦实现输出和输入的隔离,不仅提高了电源的效率,简化了外围电路,也降低了电源的成本和体积,使电源具有输出电压稳定,纹波小等优点。

关键字: 光耦 电压 纹波

开关电源在负载短路时会造成输出电压降低,同样在负载开路或空载时输出电压会升高。在检修中一般采用假负载取代法,以区分是电源部分有故障还是负载电路有故障。

关键字: 开关电源 假负载 电压

断路器是指能够关合、承载和开断正常回路条件下的电流并能在规定的时间内关合、承载和开断异常回路条件下的电流的开关装置。

关键字: 断路器 电流 开关装置

与许多工程决策一样,选择使用什么电阻值是一种权衡。较高值的电阻器会产生较高的 IR 压降和其端子上的电压,从而简化电压检测并提高 SNR。

关键字: 电阻值 IR 压降 电压

过载和短路保护,一般是通过在开关管的源极串一个电阻(R4),把电流信号送到3842的第3脚来实现保护。

关键字: 过载 短路保护 电阻

电源波动:电源电压的微小变化都能引起输出电压的漂移。例如,当电源电压变化时,三极管的静态电流和集电极电阻上的压降都会发生变化,从而影响输出电压。

关键字: 零点漂移 电源波动 电压

对于应变仪或热敏电阻等传感器,您必须使用由不完善的组件构建的电路准确且廉价地测量电阻,其中增益和偏移误差会显着限制欧姆测量的准确性。

关键字: 电阻 热敏电阻 传感器

电路功率元件由标准的boost电路组成,通过电压和电流的双重反馈,其中电压位于外环,而电流位于内环。因此,APFC在保证输出端恒定电压的同时,使得电流的波形为正弦波。

关键字: 电路 功率元件 电压

当电流增大时TL431-1的电位被太高,从而起到现在电流的功能,因为R3的存在对输出电压进行了补偿.所以基本上可以做到限流稳压功能为一体, 具有相对的成本优势。

关键字: TL431-1 电流 电压
关闭
关闭