当前位置:首页 > 医疗电子 > 医疗电子
[导读]近年来,微型/纳米机器人在生命医学领域发展迅速,且作为广大。包括药物运输、外科手术、医疗诊断、解毒等在内的应用正展现出这些微小机器人得天独厚的优势。机械学、生命医学、纳米科学等学科的合作和融合,促使了机器人在疾病预防、诊断和治疗应用上绽放出不一样的火花。

 

近年来,微型/纳米机器人在生命医学领域发展迅速,且作为广大。包括药物运输、外科手术、医疗诊断、解毒等在内的应用正展现出这些微小机器人得天独厚的优势。机械学、生命医学、纳米科学等学科的合作和融合,促使了机器人在疾病预防、诊断和治疗应用上绽放出不一样的火花。

3月份,《Science Robotics》发表一篇题为“Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification”的综述,详细阐述了微型、纳米机器人在生物医学领域的应用现状和前景。

随着动力学、材料学、医学成像等技术的发展以及医生、患者接受度的提高,医疗机器人快速发展。不同于传统的机器人,医疗机器人由细小的零件和智能材料构成,可以进行复杂而精妙的手术、解毒等操作,例如达芬奇手术机器人。科学家们研发的小型、多功能化机器人只有几微米的尺寸,甚至于更小,它们可以到达人体的任何部位,将操作降至细胞水平,以便更精准、高效的诊断和治疗。


实现微型/纳米机器人运动的不同驱动机制(化学反应及磁场、超声波、光、电等外力),以及机器人在生命医学领域不同的应用图示(来源于:综述)

许多研究表明,这些微型/纳米机器人可以穿过复杂的生物结构或者狭窄的毛细血管,进行局部诊断、成像、运载活检样本、靶向释放药物等操作。很多微型/纳米机器人由生物相容性材料构成,可以在任务完成后在人体内逐渐降解、消失。

实现药物的靶向运输

现有的纳米机器人实现药物运输依赖于体循环,缺少定点运输、组织渗透等驱动和导航能力。为了实现药物在疾病部位的精准释放,药物运输机器人需要具备强大的驱动力、导航系统、药物释放和组织渗透的能力。

虽然已有的机器人“羽翼未丰”,但是它是实现药物运输的理想化载体。科学家们对其充满期待,他们认为纳米机器人有望实现药物的快速、精准释放,从而提高疗效、减轻药物副作用。

很多初步研究已经很好地在体外、试管中展示了纳米机器人在药物运输上的潜能,例如多层管状聚合纳米机器人被证实可以通过多孔膜逐层装载抗癌药物阿霉素,且可以到达癌细胞附近。不少用于药物运输的微型/纳米机器人正处于研发早期。其中,细胞内运输是该领域的热门研究方向。纳米机器人能够穿透细胞膜并直接运输各种治疗药物进入细胞内部。

除了化学反应、超声波、电能等驱动力之外,科学家们还找到一种趋磁趋氧细菌(Magnetococcus marinus strain MC-1),它们可以驱动纳米脂质体运输至肿瘤缺氧区。这一类细菌会朝着磁场和低氧区域运动。以移植有结肠癌的小鼠为模型,研究人员发现,55%的MC-1细菌会趋向结肠肿瘤的缺氧区域HCT116。这些研究成果表情,微生物的趋磁趋氧特性可以提高药物在肿瘤缺氧地区的释放效率。微生物有望在机器人药物运输中“大展身手”。

实现手术的精准操作

手术机器人已经展现出减少复杂外科手术风险、拓宽外科医生能力的优势。这类机器人有望协助医生实现更高精度、更灵活和可控性的微创手术。与大型器械不同的是,微型机器人配备有高分辨率三维内镜,可以在患者体内灵活转动,有望突破传统外科手术的局限,将微创技术更广泛的应用于复杂的外科手术。

从纳米钻头(nanodrillers)、微型夹钳(microgrippers)到微型子弹(microbullets),这些工具的升级为微创手术提供了独特的潜能,它们可以在细胞水平实现特定组织的穿透、定位、移除等操作。

此外,磁驱动微型机器人在体内微创手术领域也展现出很大的应用前景,因为磁场可以穿透较厚的生物组织。科学家们已经证实植入式磁驱动微型机器人可以在兔子的眼后段进行手术。

实现疾病的精准诊断

得益于自主的运动性能、简单的表面功能化以及高效捕获、分离目标物的优势,微型/纳米机器人在疾病精准诊断上同样也发挥着很大的作用。微型/纳米级传感策略依赖于人工马达的能动性,借助于携带不同的生物受体,机器人能够穿过样本实现与特定生物分子的即时互作。借助这一原理,纳米机器人可以识别、隔离体液中的靶向分子,包括蛋白质、核酸、癌细胞等等。

除了检测、运输在细胞外的生物分子,纳米机器人还可以进入细胞,在其内实现传感功能。有研究团队通过给纳米机器人携带上荧光标记的单链DNA探针,实现其对细胞内microRNA-21分子的检测。

实现解毒

除了药物运输、手术之外,微型/纳米机器人也可以作为强大的解毒工具。类似于生物传感,解毒功能依赖于纳米机器人快速捕获、清除毒素。通过包裹上特定的材料,机器人可以在体内“巡逻”并“抓捕”有毒物质。这类机器人的工作原理类似于天然清理毒素的细胞,例如血红细胞(RBCs)。已有科学团队研发出携带有包裹了RBC细胞膜的镁微粒的机器人,研究表明它能够有效吸收、中和体液中的α-toxin。

此外,也有研究团队将红细胞膜与超声驱动的纳米机器人整合在一起,用于清除血液中的成孔毒素。另一种解毒尝试是构建3D版“微型小鱼”,这些小鱼携带聚二乙炔纳米粒子,可以吸引并于毒素结合。

总结、展望

过去十年,微型/纳米机器人从一个未知、多功能平台发展至集成纳米技术、人工智能等优点的技术。他们表现出很多独特的优势和应用潜力,包括在生物组织中快速运动、定位、长时间运输、精准捕获和隔离目标物等等。这些优势促成了它在生命医学领域的广泛应用,从药物运输、精准手术到细胞水平灵敏检测生物分子、高效清除有毒化合物,这意味着纳米机器人有望贯穿疾病诊疗、预防的全过程。

当然,目前微型/纳米机器人在医疗领域的应用还处于起步阶段。发挥微小机器人的全部潜能面临很多未知和挑战。其中,一个重大挑战是筛选到新能源,它需要具备长期自主操作、较好的生物相容性等特性。虽然不同的化学反应和外部刺激可以驱动微小机器人的运动,但是新的替代燃料和驱动机制很有必要,它们有望确保机器人在体内更安全、持续地运行。

未来,微型机器人会朝着更加智能的方向发展,具备高流行性、可变形结构、可持续操作、精准控制等可能,机器人之间还有望实现集群智能合作,甚至于自我进化、自我复制。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

本文将介绍MR(混合现实)技术在医疗领域中的成功应用案例。MR技术结合了现实世界和虚拟世界的元素,为医生和医疗专业人员提供了全新的工具和视角,有助于改善疾病诊断和治疗的准确性、效率和安全性。通过以下具体案例的介绍,展示了...

关键字: 混合现实 医疗 MR技术

早在16世纪,近代人体解剖学创始人安德烈·维萨里在其著作《人体结构》中首次描述了人体的骨骼、肌肉、血管和神经的自然形态和分布。这一伟大成果使维萨里成为与哥白尼并列的两大科学革命代表人物,也让医学和人体生物学从此摆脱中世纪...

关键字: 存储 医疗

虚拟现实技术作为一种创新的技术手段,在医疗领域中发挥着重要的作用。它能够为医生和患者提供更加真实、可视化的体验,帮助医疗工作者提升诊断、手术和治疗的准确性和效果。本文将介绍虚拟现实技术在医疗领域的具体应用和其所产生的重要...

关键字: 虚拟现实 医疗 设备

随着科技的不断发展,3D打印技术已经逐渐应用于医疗领域,为医学研究和临床治疗带来了革命性的变化。下面我将详细介绍医疗领域引入3D打印技术的优势。

关键字: 3D打印 医学 医疗

3D打印技术在医疗领域的应用日益广泛,它不仅能够提供个性化的医疗解决方案,还能够快速制造医疗器械和人体组织模型,为医生和患者带来了许多益处。本文将详细介绍3D打印技术在医疗方面的应用,并探讨其所起到的作用。

关键字: 3D打印 医疗 技术

随着医疗设备市场的发展,对压力传感器在医疗行业中使用提出了更高的要求,如精度、可靠性、稳定性、体积等都需要加以改进。医用压力传感器都必须高度精确并紧凑包装,以方便携带,特别是器械要与病人直接连接时。如果传感器用于某医疗器...

关键字: 医疗 压力传感器 设备

为增进大家对机器人的认识,本文将对纳米机器人的制造原理以及纳米机器人的用途予以介绍。

关键字: 机器人 指数 纳米机器人

秉承着安全和易用的组件设计理念, SCHURTER 硕特一直不遗余力地支持医疗 设备发展的需要, 凭借我们匠心独运的工程师, 医疗设备企业的要求, 我们都能够做到精益求精为。 为此我们定于 2023 年 5 月 14...

关键字: 医疗 第 34 届中国国际医疗器械设计与制造技术(春季) 展览会

尽管医疗技术发展迅速,但医护人员仍然受到以下问题的困扰:我们如何让患者尽可能舒适?虽然这是个涉及许多潜在解决方案的多方面问题,但目前有一种简单的方法似乎可以确保患者更健康,康复的更快,但这种方法经常被忽视——无线充电。无...

关键字: 无线充电 医疗 设备

公司将展出多种创新TPE材料。这些创新材料专注于符合客户在汽车、医疗应用以及专为工业和消费品应用所设计的可持续性的TPE解决方案,并帮助改善循环经济。

关键字: TPE材料 汽车 医疗
关闭
关闭