当前位置:首页 > 电源 > 功率器件
[导读]  本文较深入地讨论了两种常用模式的RCD Snubber电路:抑制电压上升率模式与电压钳位模式,详细分析了其各自的工作原理,给出了相应的计算公式,最后通过实验提出了电路的优化设计方法。  RCD Snubber电路的基本

  本文较深入地讨论了两种常用模式的RCD Snubber电路:抑制电压上升率模式与电压钳位模式,详细分析了其各自的工作原理,给出了相应的计算公式,最后通过实验提出了电路的优化设计方法。

  RCD Snubber电路的基本类型及其工作原理

  RCD Snubber是一种能耗式电压关断型缓冲器,分为抑制电压上升率模式和电压钳位模式两种类型,习惯上前者称为RCD Snubber电路,而后者则称为RCD Clamp电路。

  为了分析方便,以下的分析或举例均针对反激电路拓扑,开关器件为功率MOSFET。

  


 

  图1 常用的RCD Snubber电路

  抑制电压上升率模式

  对于功率MOSFET来讲,其电流下降的速度较GTR或IGBT快得多,其关断损耗的数值要比GTR或IGBT小,但是这个损耗对整个小功率的电源系统也是不容忽视的。因此提出了抑制电压上升率的RCD Snubber。

  如图1所示,在开关管关断瞬间,反激变压器的漏感电流需要按原初始方向继续流动,该电流将分成两路:一路在逐渐关断的开关管继续流动;另一路通过Snubber电路的二极管Ds向电容Cs充电。由于Cs上的电压不能突变,因而降低了开关管关断电压上升的速率,并把开关管的关断功率损耗转移到了Snubber电路。如果Cs足够大,开关管电压的上升及其电流的下降所形成的交叉区域将会进一步降低,可以进一步降低开关管的关断损耗。但是Cs的取值也不能过大,因为在每一个关断期间的起始点(也就是开通期间的结束点),Cs必须放尽电荷以对电压上升率进行有效的抑制;而在关断期间的结束点,Cs虽然能降低开关管电压的上升时间,但其端电压最终会达到()(为忽略漏感时的电压尖峰,为次级对初级的反射电压)。

  关管导通的瞬间,Cs将通过电阻Rs与M所形成的回路来放电。Snubber的放电电流将流过开关管,会产生电流突波,并且如果某个时刻占空比变窄,电容将不能放尽电荷而不能达到降低关断损耗的目的。

  可见,Snubber电路仅在开关过渡瞬间工作,降低了开关管的损耗,提高了电路的可靠性,电压上升率的减慢也降低了高频电磁干扰。

  电压钳位模式

  RCD Clamp不同于Snubber模式,其目的是限制开关管关断瞬间其两端的最大尖峰电压,而开关管本身的损耗基本不变。在工作原理上电压钳位模式RC的放电时间常数比抑制电压上升率模式更长。

  以图2为例分析电路的工作过程,并且使用工作于反激式变换器的变压器模型。反激式变压器主要由理想变压器、激磁电感与漏感组成。

  

 

  图2反激式变换器的Clamp电路[!--empirenews.page--]

  会发生高频谐振而使开关管DS两端电压升高,但是由于漏感产生的VSPIKE的能量能够及时转移到CC中,而使CC的端电压从次级反射电压VOR上升到最大值(VOR+VSPIKE);当开关管导通时,CC通过电阻RC放电,这样在下个周期开关管关断前,能够使得CC的端电压从(VOR+VSPIKE)恢复到VOR。这样,只要能够合理设置时间常数,就能保证在一个周期内将漏感转移到CC中的能量释放完毕。

  CC端电压在理想情况下基本上是恒定的,仅在充、放电时存在一个变化量VSPIKE。而漏感的电流始终和初级电流串联的,所以漏感电流的下降过程就是次级电流的上升过程。而漏感电流的下降过程是由RCD Clamp电路CC上的压降和反射电压VOR的差值决定的,差值越大电流下降就越快,能量传输也越快,因而效率会明显提高。所以,此时开关管DS的电压为(+VOR+VSPIKE)。这样漏感两端的电压将为VSPIKE(一般可取10V"20V),如图3所示。由法拉第定律可知因漏感引起的初、次级能量传输的延迟时间为:(8)其中,IP为在开关管关断时电感的峰值电流。

  

 

  图3 关断瞬间开关管DS电压与其电流波形

  如果电路参数选择适当,RCD Clamp电路两端的电压尖峰将通过CC来吸收,并且需要达到能量平衡,因漏感而产生的能量将完全消耗在RC上。

  实验结果分析

  实验中采用一个输出功率为3.5W的反激式开关电源样机,其主要参数如下:

  PO=3.5W;VIN=220VAC;fs=43kHz;IP=0.1A;LP=6.63mH ;=871.3mH;NP=75;NS=12;次级对初级的反射电压,取VOR=80V。另取VSPIKE=20V;开关管选用SMP4N100,其tr=18ns。

  Snubber电路参数选择及相关波形图

  经计算得出:

  CS=2.143pF,RS=4.2k健?由于几pF的电容不容易得到,故可以用10个22pF的瓷介电容串联来等效代用。有RCD Snubber电容时,开关管两端的电压VDS波形见图4;无Snubber电容的VDS波形见图5。

  

 

 

  图4 有Clamp无Snubber的波形

  

 

 

  图5 Clamp+Snubber(2.2pF+4.2k)的波形[!--empirenews.page--]

  由图5可以看出,加上合适的Snubber电路后,VDS的上升率有所减缓,因而可以转移开关管的关断损耗至Snubber电路的RS。

  值得注意的是,由于实验电源的功率很小,因而Snubber电路的电容数值很小以至作用不大。但如果用在大功率电路中,电容的数值会较大,因而效果将更为明显。

  RCD Clamp电路参数选择及相关波形图

  经计算得出:CC=815.87pF;RC=300.19k?实际中选取CC=1nF,Rc分别选取270k郊?00k剑?⑶曳直鹪谟蠷CD Clamp及无RCD Clamp下对比两者的实际效果。

  图6为不加Clamp电路时开关管电压波形VDS,其端电压已超过600V;图7为Clamp电路中选取RC=270k剑珻C=1nF,端电压为474V。

  

 

  图6 无Clamp 时的波形

  

 

  图7 Clamp:270k+1nF的波形

  可见,采用Clamp电路并选取利用公式计算出的数值,可使开关管端电压VDS有效地钳位到合适的电压水平,为实际所用。

  结语

  通过适当选取RCD Snubber 的电路参数,可有效地改善开关管的开关轨迹,降低其关断电压的上升速率,可以转移开关管的损耗至Snubber电路的电阻上,提高开关管的工作可靠性,同时改善电路的高频电磁干扰,但Snubber电路基本上不会提高整机的工作效率。

  反激式变换器在开关管关断时,存在很高的电压尖峰,通过适当选取RCD Clamp的电路参数,可以对开关管实现电压钳位,避免因过高的电压尖峰使开关管受损。但是,因Clamp电路消耗了变压器漏感上的能量,从而在一定程度上影响了整机的工作效率。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

英国石油公司(bp)收购美国可再生天然气公司Archaea Energy,刷新了全球可再生燃料企业的收购纪录,总收购价格达41亿美元(含8亿美元的债务)。这也是英国石油公司首席执行官伯纳德·鲁尼自2020年初上任以来进行...

关键字: ENERGY 天然气 RC

Intel Arc A7系列高端显卡发布后,作为Intel显卡首家核心合作伙伴,蓝戟第一时间同步推出了非公版新品,Arc A770 Flux 8G OC、A750 Flux 8G OC、A750 Photon 8G OC...

关键字: Intel 显卡 RC PHOTON

英国石油公司(bp)宣布同意收购美国最大可再生天然气生产商之一Archaea Energy公司。经监管部门和Archaea股东批准的协议收购将以33亿美元现金以及约8亿美元净债务进行,收购总价值近41亿美元。双方目标在2...

关键字: ENERGY 天然气 RC

科济药业宣布, 中国国家药品监督管理局已受理泽沃基奥仑赛注射液(zevorcabtagene autoleucel,研发代号:CT053)的新药上市申请。泽沃基奥仑赛注射液是一种用于治疗复发/难治多发性骨髓瘤的全人抗自体...

关键字: GEN RC EV CE

(全球TMT2022年10月14日讯)近期,小米生态链企业未来居面向高星酒店及连锁酒店推出有线一体式RCU(金属壳版),该产品由未来居独立自主研发,是一款系统化的高性能、高集成、低消耗的智能网关设备。RCU(客房智能控...

关键字: 智能网关 RC 金属 布线

北京2022年10月13日 /美通社/ -- 在消费提档和疫情常态化背景下,酒店行业纷纷入局智能化赛道。近期,小米生态链企业未来居面向高星酒店及连锁酒店推出有线一体式RCU(金属壳版),该产品由未来居独立自主研...

关键字: 智能化 智能网关 RC 金属

深圳2022年9月26日 /美通社/ -- 当前全球制造业面临经济下行压力明显、疫情发展不确定性、原材料价格波动、能源危机、通货膨胀等挑战,与之同时也迎来RCEP红利、粤港澳大湾区发展空间辽阔、经济社会绿色转型...

关键字: CHINA BSP CE RC

为增进大家对电池的认识,本文将对电池的几个性能参数予以介绍。

关键字: 电池 指数 电压

本文将基于3个方面介绍控制器:1.什么是控制器,2.控制器的工作原理是什么,3.控制器的基本功能有哪些。

关键字: 控制器 指数 缓冲器

为期16日的亚洲奇遇之旅欣然揭幕 2023年私人飞机行程仍有少量余席可供预定,今年将陆续发布2024年度其余私人飞机行程 加拿大多伦多2022年8月23日 /美通社/ -- 随着人们对个性化专属体验的渴望不断升级,四...

关键字: 飞机 BSP RC 串联

功率器件

12198 篇文章

关注

发布文章

编辑精选

技术子站

关闭