锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负
摩托车电池在使用一段时间后,电能不足需要重新充电。本文介绍了几种经济实惠,方便可行的充电方法。一、充电器的自制、选用及调试若有条件可自制简单的6V充电器,电路如图
在PCB的EMC设计考虑中,首先涉及的便是层的设置;单板的层数由电源、地的层数和信号层数组成;在产品的EMC设计中,除了元器件的选择和电路设计之外,良好的PCB设计也是一个非
抖动(Jitter)反映的是数字信号偏离其理想位置的时间偏差。高频数字信号的bit周期都非常短,一般在几百ps甚至几十ps,很小的抖动都会造成信号采样位置电平的变化,所以高频数
ARM Cortex内核改变了MCU产品的传统形态,毕竟通用的标准有助于减少整体系统成本、降低设计复杂度并缩短开发时间。开发人员在为特定设计选择MCU时需考虑诸多因素,如存储大
在产品设计时,倘若没有考虑应用环境对电源隔离的要求,产品到了应用时就会出现因设计方案的不当导致的系统不稳定,甚至出现高压损坏后级负载的情况,以及出现危害人身财产
塔式光热发电发展历程塔式太阳能热发电系统的设计思想是20世纪50年代由前苏联提出的。1950年,前苏联设计了世界上第一座塔式太阳能热发电站的小型实验装置,对太阳能热发电
在嵌入式系统需要可靠供电的电信、工业和汽车应用中,数据丢失是一个关切的问题。供电的突然中断会在硬盘和闪存器执行读写操作时损坏数据。我们常常使用电池、电容器和超级
稳压器在想要从不稳定或可变的电源中获得稳定电源电压的应用至关重要。这类电源包括逐渐放电式的电池或整流后的交流电压等。而对开关稳压器产生的噪声或残留交流纹波较敏感的应用,包括射频收发器、Wi-Fi模块和光学图像传感器,采用线性稳压器来可最大限度地减少整个系统的错误和误差。
发现这些细节,拯救电路很多人都一样,我们很多工程师在完成一个项目后,发现整个项目大部分的时间都花在“调试检测电路整改电路”这个阶段,也正是这个阶段,很多项目没有办法进行下去,停滞在那边。想要快速完成项目,摆脱实验调试时的烦闷,苦恼不知道问题出在哪里,就快点了解下面这些电路设计中的细节!
将二个电压叠加就实现的电压的提升,这就是升压变换器的基本原理。 使用储能元件从输入电源获取能量得到一个电压,然后将它和输入电压顺向串联,就可以实现升压功能。电容和电感是二种常用的储能元件,如果使用电容实现这个功能,这种升压变换器称为电容充电泵;如果使用电感实现这个功能,这种升压变换器称为BOOST变换器。另外,也可以将直流电压变为交流,然后使用高频变压器升压,如反激、正激、推挽、半桥和全桥等电源结构。本文只讨论前面二种结构的演变过程。
MOSFET的漏极导通特性如图1所示,其工作特性有三个工作区:截止区、线性区和完全导通区。其中,线性区也称恒流区、饱和区、放大区;完全导通区也称可变电阻区。
一、锂离子电池组成结构锂离子电池是一种二次化学电池(充电化学电池),其正负极由两种不同的物质构成,可供锂离子可逆地嵌入和脱出。充电过程中,锂离子从正极脱出,经过电解质嵌入负极的晶格之中,从而正极处于高电位的贫锂状态,负极则处于低电位的富锂状态;放电时则相反,具有电压高、比能量高、比功率高、循环寿命长、自放电小、无记忆效应、对环境友好等特点,是当前最符合新能源应用发展趋势的储能技术。
电力系统时间同步及其原理当前,电力系统的时间同步主要通过确定变电站内GPS和北斗卫星授时系统统一状态,以及对于一些比较陈旧的变电站要进行时间同步的配置。
日前,中科院长春光机所研究员曲松楠课题组突破了碳纳米点在近红外波段发光效率低的难题,首次研制出具有高效近红外吸收/发光特性的碳纳米点,实现了基于碳纳米点的活体近红外荧光成像。