最新的GaN技术是把逻辑集成到 E-Mode GaN HEMT 中,因此,它可以以最少的工作量与驱动程序和控制器连接,并且还可以节省成本,因此不需要额外的组件。因此,我们的解决方案可以像 MOSFET 一样被驱动。为什么E-Mode GaN HEMT选择集成逻辑而不是 GaN 驱动器的原因是什么吗?
目前有几个 GaN 器件概念。那么,大家能告诉我从设计的角度来看,哪些是主要的,哪些是我们的发展方向?,关于GaN的十件事,有没有你更关注的点?
德州仪器 (TI) 扩展了其高速数据转换器系列,新增了八个逐次逼近寄存器 (SAR) 模数转换器 (ADC) 系列,可在工业环境中实现高速数据采集。针对工业系统中的实时控制挑战,ADC3660 SAR ADC 具有 14 位、16 位和 18 位分辨率,采样速度范围为 10 到 125 MSPS,声称可将功耗降低 65%,将延迟降低 80%。竞争设备。
5G 应用,从手机和基础设施到互联汽车和工业,都需要电容器技术的新进步。 虽然 5G 手机市场对陶瓷电容器的需求量将增长,但为利用 5G 功能而出现的各种嵌入式工业和汽车应用将推动特种组件类型的技术进步。
这有点像灰姑娘或丑小鸭的童话故事:多年来,各种类型、大小和速度的处理器都是一般媒体关注的迷人主题以及主要的研发投资。与此同时,功率器件——主要是基于硅的 MOSFET 和 IGBT——显然被低估了,并且作为本应乏味的功率利基市场的一部分在背景中萎靡不振。
在半导体外延材料制造过程中,会产生位错,即材料中的缺陷。半导体中的缺陷越多,可以在晶片上生产的可用器件就越少,这会增加成本。此外,不良的材料界面会导致更高的器件通道电阻,从而导致更多的能量在运行过程中被浪费,从而降低芯片的能效。
GaN 半导体是未来节能电动汽车和 5G 网络的关键组成部分。总部位于瑞典隆德的初创公司 Hexagem 正在瑞典研究机构RISE 测试平台 ProNano开发一种解决方案,旨在为更大的电气化和可持续的未来做出贡献。
最近,我会见了 Transphorm 总裁兼联合创始人 Primit Parikh。Parikh 强调,他们的 GaN on Silicon 解决方案是业内唯一通过 JEDEC 认证的产品。
电动和混合动力汽车的设计人员致力于提高能量转换效率,这些设备具有紧凑的封装和高热可靠性电力电子模块的组装,并降低了开关损耗。
2022年6月22日-NSD1624是纳芯微最新推出的非隔离高压半桥驱动芯片,驱动电流高达+4/-6A,可用于驱动MOSFET/IGBT等各种功率器件。
比利时蒙-圣吉贝尔和中国深圳 – 2022年06月20日 – 提供基于碳化硅(SiC)和氮化镓(GaN)的耐高温、长寿命的高效、紧凑电机驱动和智能功率模块解决方案的领先供应商CISSOID S. A.(CISSOID),和中国先进电动汽车动力总成制造商 - 深圳市依思普林科技有限公司(依思普林)今日共同宣布:双方已达成战略合作伙伴关系,将共同开展研发项目,使碳化硅功率器件的优良性能在电动汽车动力总成领域得以充分发挥,从而实现电动汽车动力总成的全面优化和深度集成。
在过去的四十年里,由于采用了更好的设计和制造工艺,以及高质量材料的可用性,基于硅技术的功率器件取得了重大进展。然而,大多数商用功率器件现在正在接近硅提供的理论性能极限,特别是在它们阻挡高压的能力、在导通状态下提供低电压降以及它们在非常高的频率下开关的能力方面。
最近可能遇到了“GaN”,它正在一些关键的功率转换应用中取代硅 (Si)。在本博客系列“如何使用 GaN 进行设计”中,我将了解氮化镓 (GaN) 与 Si 的不同之处,以及使用 GaN 创建电源设计时的关键考虑因素。
在 PCB 中提供大铜平面。将器件的裸露焊盘焊接到铜平面上,并将平面延伸到 PCB 的边缘,以增加散热面积。对于四层板,您可以在所有层中使用铜平面来散热,与两层板相比,这反过来可以提高 30% 的性能。PCB 面积越大,由于对流而产生的散热量就越高。提供没有任何中断的铜平面,以便通过平面的热量传播将是有效的。
6月7日,国内第三代半导体碳化硅功率器件头部企业——基本半导体在公司成立六周年之际宣布完成C2轮融资,由广汽资本、润峡招赢、蓝海华腾等机构联合投资。本轮融资将用于进一步推动碳化硅功率器件的研发进度以及制造基地的建设,着力加强在新能源汽车及光伏发电领域的市场拓展,确保基本半导体在国产碳化硅器件领域的领先地位。
荷兰芯片制造商Nexperia赞助的最近行业活动的参与者表示,汽车、消费和航空应用中的功率转换等应用正在利用氮化镓 (GaN)技术的优势。 例如,Kubos Semiconductor 正在开发一种称为立方 GaN 的新材料。“它是立方氮化镓,我们不仅可以在 150 毫米及以上的大型晶圆上生产它,而且还可以扩展到更大的晶圆尺寸,并可以无缝插入现有的生产线,”Kubos 首席执行官 Caroline 说奥布莱恩。
新 IC 工艺的开发和商业化,尤其是有些激进的工艺,在我看来一直是设备技术的神奇和神秘的终结。是的,有聪明的电路、架构和拓扑结构,但是构思一个新的过程,然后让它成为现实和可制造的——以及现实所需要的一切——似乎需要对物理定律、材料科学、量子理论、以及更多。事情并没有就此结束:在工艺技术进步之后,我们仍然需要提出设计规则和模型,以便 IC 设计人员和生产流程能够真正利用该工艺。
英飞凌科技股份公司(FSE: IFX / OTCQX: IFNNY)的功率器件在线仿真平台IPOSIM被广泛应用于计算功率模块、分立器件和平板器件的损耗及热性能。通过该平台可轻松分析单个工作点及用户自定义的负荷曲线。
近年来,使用“功率元器件”或“功率半导体”等说法,以大功率低损耗为目的二极管和晶体管等分立(分立半导体)元器件备受瞩目。这是因为,为了应对全球共通的 “节能化”和“小型化”课题,需要高效率高性能的功率元器件。 然而,最近经常听到的“功率元器件”,具体来说是基于什么定义来分类的呢?恐怕是没有一个明确的分类的,但是,可按以高电压大功率的AC/DC转换和功率转换为目的的二极管和MOSFET,以及作为电源输出段的功率模块等来分类等等。
详细介绍MOSFET结构及其工作原理!