随着深度学习应用不断进入商用化,各类框架在服务器端上的部署正在增多,可扩展性正逐渐成为性能的重要指标。香港浸会大学褚晓文团队近日提交的论文对四种可扩展框架进行了横向评测(Caffe-MPI、CNTK、MXNet 与 TensorFlow)。该研究不仅对各类深度学习框架的可扩展性做出了对比,也对高性能服务器的优化提供了方向。
加拿大研究人员研发出一种新技术——深度学习人工智能软件。小到智能手机,大到工业机器人,都能应用这款软件。同时,这款软件的开发也为人工智能不再受限于互联网和云计算铺平了道路。
好莱坞惊悚片长久以来就已实现这一点,用来识别某人的身份以及他们在视频和图像上做何事的工具正在成形。多年来,Facebook和百度等公司一直在研发这种人工智能技术。但是,随着差错率不断缩小,以及这些系统使用范围不断扩大,我们可以预见到,在不久的将来,每一段视频都可以用于分析,从而识别出里面的人物、物体和行为。
Qualcomm Incorporated子公司Qualcomm Technologies, Inc.于今日阐释了其人工智能愿景——即以无处不在的终端侧人工智能对云端人工智能实现补充。在我们预想中的世界里,人工智能将使终端、机器、汽车和万物都变得更加智能,简化并丰富我们的日常生活。
总结2016年一件有纪念意义的科技事件是阿法狗战胜围棋九段选手李世石,标志着人工智能算法达到了新的高度,同时也说明了人工智能未来发展的潜力,未来人工智能将会给工业服务业农业带来很大的影响。
由于受到技术瓶颈及硬件平台计算能力的限制,人工智能在安防行业的应用一直发展缓慢。但自从2010年以来,随着互联网海量数据的出现,使得深度学习发挥潜力。同时以GPU为代表的硬件平台计算能力的飞速提升,更进一步加速了深度学习技术的普及。
近年来,处理器技术进入如此大,一个像U盘那么大的设备现在都可以用于为神经网络提供能量。但是,企业通常很难充分发挥其计算能力,因为实施大规模人工智能过程中还存在的根本挑战。
在深度学习的领域里,最重要的是数据和运算。谁的数据更多,谁的运算更快,谁就会占据优势。因此,在处理器的选择上,可以用于通用基础计算且运算速率更快的GPU迅速成为人工智能计算的主流芯片。
该研究将会发布在今年的 KDD 会议上被介绍,它解决了谷歌、Facebook、微软等大公司面临的最大难题之一。这些大公司都在争相建立、训练、部署大量的深度学习网络来发展不同的产品,例如自动驾驶汽车、翻译、邮件智能回复。
什么是人工智能,什么不是?毫无疑问,AlphaGo是由谷歌DeepMind设计的“人工智能围棋系统”,它是个非常聪明的系统。AlphaGo击败了围棋世界冠军Lee Sedol,而类似
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
最近,一篇名为《Using Deep Learning and Google Street View to Estimate the Demographic Makeup of the US》的论文发布到了arxiv.org上,作为这篇论文的联合作者之一
深度学习全称深度神经网络,本质上是多层次的人工神经网络算法,即模仿人脑的神经网络,从最基本的单元上模拟了人类大脑的运行机制。近年来,其所取得的前所未有的突破掀起了人工智能新一轮的发展热潮。
本文来自CMU的博士,MIT的博士后,vision.ai的联合创始人Tomasz Malisiewicz的个人博客文章,阅读本文,你可以更好的理解计算机视觉是怎么一回事,同时对机器学习是如何随着时间缓慢发展的也有个直观的认识。
市场需求放缓和业绩提升难的压力正促使全球半导体行业再度掀起创新风潮,该行业的公司都在努力研发新的芯片设计、材料和制造工艺,其中一个原因是深度学习这一人工智能技术正越来越广泛地被应用于图片分类、语音翻译和自动驾驶等任务。
2016年初,一场人机大战点燃了人工智能芯片的争夺战,而作为核心和底层基础的人工智能芯片已经成为半导体公司的新宠。计算机芯片巨头NVIDIA日前发布了支持深度学习技术的新款芯片Tesla P100,而早在2015年10月,Int
计算能力大幅提升,深度学习算法不断提高,机器学习变得更加强大,与此同时数据量的急剧增长也大大推动了这些算法的发展,人工智能从此 进入了加速增长的新阶段。经过了60多年,人工智能的发展已接近临界点,完全具备 实现大规模商用的潜力。人工智能的迅速发展可能更有利于科技板块,因为这一行业具有相关的人才、技术和资金,更易于推动人工智能的发展和普及。
为抢占市场商机,云端业者及处理器业者皆致力研发新技术,透过深度学习,Rekognition可使开发人员能够快速,轻松地构建、分析图像应用,并自动识别人脸、物体和场景,为强化云端伺服器运算功能,AMD则是发布新一代加速器--Radeon Instinct,提供强效且基于GPU的解决方案以执行深度学习推论与训练工作。
日前在CES 2016期间推出以Snapdragon 820为基础的Snapdragon 820A、Snapdragon 820Am,同时导入Qualcomm Zeroth认知系统,藉由机器学习模式持续累积车辆行驶判断经验,并
Qualcomm Incorporated今日在加利福尼亚州圣克拉拉市举行的嵌入式视觉峰会(Embedded Vision Summit)上宣布,其子公司Qualcomm Technologies, Inc.将向高通骁龙™820处理器支持的终端提供首个深度学习软件开发