CMOS

我要报错
CMOS(Complementary Metal Oxide Semiconductor),互补金属氧化物半导体,电压控制的一种放大器件,是组成CMOS数字集成电路的基本单元。
  • 太赫兹射频前端集成:InP HEMT与CMOS的异质封装方案

    太赫兹(THz)波段位于微波与红外光之间,具有独特的频谱特性,在高速通信、高分辨率成像、安全检测等领域展现出巨大的应用潜力。然而,太赫兹射频前端作为太赫兹系统的关键组成部分,其集成面临诸多挑战。砷化铟高电子迁移率晶体管(InP HEMT)凭借其优异的高频性能,在太赫兹频段具有出色的增益和噪声特性;而互补金属氧化物半导体(CMOS)技术则以其高集成度、低成本和成熟的制造工艺著称。将InP HEMT与CMOS进行异质封装,整合两者的优势,成为实现高性能、低成本太赫兹射频前端集成的有效途径。

  • 量子-经典混合芯片的接口设计,超导量子比特到CMOS控制电路的协同

    量子计算迈向实用化的进程,量子-经典混合芯片架构成为突破技术瓶颈的关键路径。超导量子比特虽具备高速门操作与可扩展性优势,但其运行需在毫开尔文级低温环境中维持量子态相干性;而CMOS控制电路则依赖室温环境下的成熟工艺与高集成度。这种物理条件的极端差异,催生了量子-经典接口设计的核心挑战:如何在超低温与室温之间实现高效、低噪声的信号传输与协同控制。从超导谐振腔的量子态编码到CMOS芯片的脉冲序列生成,接口设计正成为连接量子世界与经典世界的桥梁。

  • 什么是BiCMOS?BiCMOS的工艺流程是什么样的?

    为增进大家对BiCMOS技术的认识,本文将对BiCMOS以及BiCMOS工艺流程予以介绍。

  • CMOS图像传感器工作过程: 复位、光电转换、积分、读出几部分介绍

    CMOS图像传感器通常由像敏单元阵列、行驱动器、列驱动器、时序控制逻辑、AD转换器、数据总线输出接口、控制接口等几部分组成,这几部分通常都被集成在同一块硅片上。

  • 双极结型晶体管展现实力

    在 CMOS 和宽带隙半导体技术的进步中,您很容易忘记 William Shockley 于 1949 年发明的第一个晶体管是双极结型晶体管 (BJT)。尽管它们已经不再流行,但这些不起眼的设备仍然在各种类型的电子设备中大量高效可靠地运行。事实上,在某些应用中,BJT 的性能可以超越更杰出的 CMOS 同类产品。 BJT 技术的最新改进将使它们成为半导体技术领域的重要组成部分。

  • 高速AD转换器的生存指南,第四部分

    类似的原理也可以应用于任何使用差动信号的高速接口技术。事实上,随着数据传输速度的加快,需要增加对这些项目的关注。随着数据速率进入Gbps范围,过程和板几何形状变得更小,在短得多的传输距离时,串扰等不必要的影响会成为一个问题。

  • 高速AD转换器的生存指南,第三部分

    在模拟数字转换器(ADC)空间,目前主要有三种类型的数字输出使用的ADC制造商。如本文之前部分所述,这三种输出是互补金属氧化物半导体(CMOS)、低压差动信令(LVDS)和电流模式逻辑(CML)。

  • 高速AD转换器的生存指南,第二部分

    目前,已经有两个标准已经编写来定义LVDS接口。最常用的ANSI/TIA/EIA-644规范,题为"低压差动信令(LVDS)接口电路的电气特性。另一种是题为"用于可伸缩相干接口的低压差动信号(LVDS)标准"的IEEE标准159.3。"

  • 高速AD转换器的生存指南,第一部分

    由于设计者可以选择许多类似数字转换器,在选择过程中需要考虑的一个重要参数是包括的数字数据输出类型。目前,高速转换器使用的三种最常见的数字输出类型是互补金属氧化物半导体(CMOS)、低压微分信号(LVDS)和电流模式逻辑(CML)。

  • ISP+可拓展算力组合,飞凌微实现图像传感器与SoC之间更好的融合

    当前端侧AI正在快速落地推进,而智能车载领域尤为活跃,特别是在国内市场,智能车载的快速发展引人注目。据Yole预测,2023年至2029年,全球车载摄像头市场规模将从57亿美元增至84亿美元。但目前车载视觉系统方案尚未统一,既有大域控制架构的探索,也有分布式架构的应用。而在分布式架构的应用场景中,面临的主要挑战在于如何更好地融合图像传感器与SoC,以实现性能与成本的最佳平衡。此外,在技术层面,需要通过更先进的平台工具和AI加速技术,结合图像性能优化手段,推动技术的迭代与升级。

  • 如何处理CMOS接口电路问题?CMOS电路SCR闩锁介绍

    一直以来,CMOS电路都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来CMOS电路的相关介绍,详细内容请看下文。

    模拟技术
    2024-10-21
    电路 CMOS
  • 最强梳理! 使用CMOS集成电路需注意的几个问题

    集成电路按晶体管的性质分为TTL和CMOS两大类,TTL以速度见长,CMOS以功耗低而著称,其中CMOS电路以其优良的特性成为目前应用最广泛的集成电路。

    技术前线
    2024-09-18
    TTL CMOS
  • 如何提高BJT开关速度?为什么BJT比CMOS速度要快?

    在这篇文章中,小编将对BJT的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

    模拟技术
    2024-08-20
    BJT CMOS
  • 一种改进型的CMOS电荷泵锁相环电路

    在现代通信及电子系统中,锁相环(Phase-Locked Loop, PLL)是一种重要的频率同步与控制技术。CMOS电荷泵锁相环(Charge Pump Phase-Locked Loop, CPPLL)因其开环增益大、捕获范围宽、捕获速度快、稳定度高和相位误差小等优势,被广泛应用于无线通信、时钟恢复及频率合成等领域。然而,传统CMOS电荷泵锁相环电路存在电流失配、电荷共享和时钟馈通等问题,这些问题限制了其性能和应用范围。本文设计了一种改进型的CMOS电荷泵锁相环电路,通过优化电荷泵电路和增加开关噪声抵消电路,有效解决了上述问题,并扩展了锁相环的锁频范围。

  • 如何设计CMOS运放?超详细设计过程,看完必会!

    本文中,小编将对CMOS运放设计予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。

    模拟技术
    2024-07-18
    运放 CMOS
  • 1款模拟开关应用电路的纠错与改正!

    在这篇文章中,小编将对一个模拟开关应用电路进行纠错,并对错误的模拟开关应用电路进行改正。通过这篇文章,小编希望大家可以对模拟开关应用电路有所认识和了解,详细内容如下。

  • CMOS数字集成电路概述及其特点

    在现代电子技术的发展中,集成电路作为电子系统的核心,其性能和技术水平直接决定了整个电子系统的性能和可靠性。CMOS(Complementary Metal-Oxide-Semiconductor)数字集成电路,作为当前应用最广泛的集成电路技术之一,其独特的结构和优异的性能使其在计算机、通信、消费电子等众多领域发挥着至关重要的作用。本文将对CMOS数字集成电路进行详细介绍,并探讨其特点。

  • 全局快门赋予机器人更“快”的环境感知和捕捉能力——思特威CMOS图像传感器SC038HGS亮相松山湖论坛

    据思特威销售总监宗翔(Will Zong)介绍:“全局快门的传感器,会分为全局快门和卷帘快门两种技术。全局快门的产品,参数上帧率会达到120帧,或者240帧甚至更高,卷帘快门一般做一些监控类应用的话,帧率只有30帧,全局快门更适合于拍摄快速移动的物品,这个才是全局快门和卷帘快门最主要的区别。”

  • 前有禁令,后有三星,索尼还能稳坐CMOS图像传感器的王座吗?

    索尼亟需打破自身保守谨慎的态度,双管齐下智能手机与汽车市场,在技术研发上秉持创新精神,推出更具竞争力的CIS“黑科技”,才能在下半场的市场争夺战中站稳脚跟,否则就只能看着三星一路高歌了。资本市场往往以利益为重,不料被政治横插了一脚。在遭受美国连续几轮打压后,华为不堪重负,高端手机出货量骤减。而产业链上下游市场牵一发而动全身,索尼(Sony)在内的供应链企业成了华为禁令的间接受害者,营收额下滑不说,铠侠(Kioxia)甚至推迟了IPO计划。

  • 研究人员已经开发出新方法制造用于高级电路的柔性半导体

    柔性半导体对于未来的可穿戴电子技术至关重要,但一直难以集成到复杂的架构中。现在,在最近发表在Advanced Electronic Materials上的一项研究中,来自日本的研究人员已经开发出一种直接的方法来制造用于高级电路的高质量软半导体。

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页