当前位置:首页 > 工业控制 > 《机电信息》
[导读]摘要:探讨了共沉淀法制备安全防火的车用锂离子电池锰钻镍三元正极材料的工艺参数,并进行了组织性能研究。

引言

锂离子电池在比容量、无记忆效应、长寿命、环保等方面综合性能远远超过其他电池,被称为"终极电池"。不过,当前锂离子电池的发展受到其安全性问题的制约。

1锂电池存在安全性问题的原因

目前量产的正极主要有钻酸锂等材料产品,钻酸锂虽然在小电芯方面是很成熟的体系,但由于钻酸锂在充满电后仍有大量的锂离子留在正极,当过充时,残留在正极的锂离子就会涌向负极,在负极上形成枝晶,这是采用钻酸锂材料的电池过充时必然的结果,即使在正常充放电过程中,也有可能会有多余的锂离子游离到负极形成枝晶,刺穿隔膜,形成短路,产生几百安培的过大电流,它内部有机电解液在大电流、高温的条件下会被电解产生气体,导致内部压力升高,严重时会冲破壳体。

同时,在高电压下正极锂的氧化物也会析出金属锂,在气体冲击引起壳体破裂的情况下,与空气直接接触,会导致燃烧,同时引燃电解液,产生强烈火焰,发生爆炸。

2解决大容量锂电池安全性问题的途径

锂离子电池的安全性问题,并不是外围问题,而是一个基于材料技术的本质问题。如何在材料技术上取得突破,关键在于选择安全的正极材料。

近期手机电池发生爆炸事件频频见诸报端,一方面是由于保护电路失效,但更重要的是正极材料方面的问题并没有根本性解决。

锰钻镍三元正极材料1iNixCoyMn1-x-y02(1NCM)作为一种新型锂离子电池正极材料,具有能量密度高、成本相对较低等突出特点,尤其是在充电时不容易形成枝晶,安全性能好,将成为车用电池领域最具潜力的正极材料。

3锰钻镍三元正极材料的制备

锰钻镍三元材料通常可以表示为1iNixCoyMnz02,其中x+y+z=1。共沉淀法是合成锰钻镍三元正极材料的主要方法,其反应方程式如下:

一种安全防火的车用锂离子电池正极材料的

共沉淀法通过控制进料速度、共沉淀反应的温度、pH值来制备草酸盐、氢氧化物和碳酸盐前驱体,再混锂烧结,可以制备颗粒大小可控的球形、核壳型颗粒,有效控制化学成分,从而解决传统固相法混料不均和粒径分布过宽等问题。

4锰钻镍三元正极材料组织与性能

4.1共沉淀反应的搅拌速度与时间对组织的影响

在固定的金属混合液、络合剂、沉淀剂等溶液浓度及相同的反应时间下,我们通过改变反应釜搅拌速度获得不同的前驱体样品,并得到扫描电子显微镜测试图(sEM),如图1、图2所示。

分析锰钻镍三元材料的梯度结构,为使材料的梯度结构与性能有更好的体现,我们希望获得的前驱体颗粒有较大的粒径,球形度也应该好一些。通过对比图1和图2可以发现,在相同条件下,600r/min转速下前驱体材料的形貌,即球形度及均匀度都较好,由此可知共沉淀时的转速以600r/min为宜。接下来将600r/min转速下的SEM图利用NanoMeasurre软件进行粒径统计(图3),统计结果大颗粒平均粒径为4.82um,小颗粒平均粒径为2.37um。

从样品材料的粒径大小统计可知,粒径明显较小。图4是将反应时间延长到近20h所测的各时段扫描电子显微镜图片。

从样品的SEM测试图可以看出,刚开始颗粒的粒径细小,分布杂乱,随着时间的延长,前驱体材料的颗粒粒径不断增大,球形度也不断提高,颗粒分布变得规整有序。

4.2锰钻镍三元正极材料的微观形貌

将制得的前驱体材料按一定比例与LiOH·H2O粉末混合,在760~860℃之间烧结10~20h,得到了具有递进式浓度梯度的锰钻镍三元正极材料,对其利用SEM进行物理表征,观测其微观形貌。

图5为真空烘干后的三元材料前驱体,图6为前驱体材料混锂烧结后的正极活性物质,对比可以看出,混锂烧结之后,材料中的小颗粒有一定程度的减少,这些未成核的小颗粒材料在温度升高的过程中沿着球形晶体表面形成致密的产物,一定程度上会影响材料的电化学性能。

一般来说,活性金属成分含量越高,材料容量就越大,但当Ni的含量过高时,会使Ni2+占据Li+位置,引起阳离子混排导致容量降低。Co正好可以抑制阳离子混排,而且稳定材料层状结构:Mn4+不参与电化学反应,可提供安全性和稳定性,同时降低成本。对烧结后得到的三元材料取样,利用能量色散x射线光谱仪(EDs)进行元素分析。选取单个颗粒比线扫描进行元素组成的定性分析,从图7可以看出从中心到外壳,Ni元素含量有明显下降的趋势,而Mn元素和Co元素呈现明显上升的趋势,与预期要得到的梯度型三元材料相符合。

4.3充放电性能测试

4.3.1循环性能测试

固定烧结时间,改变烧结温度分别为820℃、840℃、860℃,混锂比例分别为1%、2%、3%,探究烧结温度和混锂比例对锂离子电池性能的影响。

图8为2%混锂比例下不同烧结温度的材料循环测试,可以看出,随着烧结温度的升高,材料的首次放电比容量提高,但循环稳定性变差。比较前驱体和正极材料的sEM图可以发现,这是因为在温度升高的过程中未成核颗粒会沿着球形晶体表面形成致密的产物,温度过高时,颗粒粒径变大,比表面积变小,会使锂离子嵌入/脱出变得困难,从而使得电池的循环性能变差。

计算发现820℃烧结的材料1C100次循环时容量保持率均达到了95%以上,而840℃和860C分别等于或小于90%,1C200次循环时容量保持率分别为90%、85%、65%。

4.3.2倍率性能测试

图9所示为860℃烧结温度下不同混锂比例的三元材料的倍率性能测试,从图中可以看出,混锂比例为2%时材料的倍率性能最好,这是因为锂盐在高温煅烧的过程中会有部分挥发,混锂量过少不足以弥补挥发的损失,混锂过多会导致材料表面碱性较高,增加不可逆容量损失。

5结语

共沉淀法通过控制温度、搅拌速度、pH值等可制备粒径分布窄、振实密度高的电化学性能优异的锰钻镍三元材料,具有浓度梯度的锰钻镍三元正极材料有容量高、循环稳定性好、成本适中等优点,尤其是不易形成枝晶,而且操作工艺较为简单,能更好地满足一些高容量、高能量密度的应用需求,可在电动汽车等领域发挥很好的作用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

与安卓系统相比,鸿蒙系统具有卓越的性能,不仅可以应对各种各样的设备,而且在多设备播放和物联网方面也有很强的优势。

关键字: 鸿蒙系统 智慧时代 安卓系统

在电力电子与电气工程领域,逆变器和变压器都是不可或缺的重要设备。尽管它们都在电力转换和传输过程中发挥着关键作用,但它们在功能、工作原理和应用场景等方面存在着显著的差异。本文将从科技视角出发,对逆变器和变压器的区别进行深度...

关键字: 逆变器 变压器

电动机作为现代工业与生活的重要动力源,广泛应用于各个领域。然而,在电动机的运行过程中,电容烧毁的问题时常发生,给生产和生活带来诸多不便。那么,电动机为何偏爱“烧电容”呢?本文将从电容的作用、烧毁原因以及预防措施等方面进行...

关键字: 电动机 电容

在日新月异的工业技术领域,变频器作为一种电力电子装置,已逐渐成为驱动设备、节能降耗的不可或缺的关键设备。AMB100变频器作为其中的佼佼者,凭借其出色的性能、广泛的应用领域以及高效的节能效果,为现代工业生产提供了强大的动...

关键字: amb100变频器 变频器

光伏发电作为本世纪最具有潜力的可再生能源技术之一,其清洁、环保、可再生的特性受到广泛关注。然而,任何一项技术都不是完美的,光伏发电同样存在一些明显的缺点和挑战,这些问题限制了其大规模应用和商业化推广。本文旨在深入探讨光伏...

关键字: 光伏发电 光电效应

在电源管理领域,低压差线性稳压器(LDO)因其结构简单、稳定性好、噪声低等特点而得到广泛应用。随着电子设备对电源性能要求的不断提高,片外电容的LDO设计逐渐成为研究的热点。其中,功率管作为LDO的核心部件,其设计尤为重要...

关键字: ldo 有片外电容 低压差线性稳压器

磁铁,作为一种能够吸引铁、镍、钴等金属的特殊物体,自古以来就引起了人们的极大兴趣。在现代科技中,磁铁的应用更是无处不在,从电动机、发电机到核磁共振成像设备,无不体现了磁铁的神奇力量。那么,磁铁与磁铁之间是如何相互作用的呢...

关键字: 磁铁 磁场

随着可再生能源技术的不断发展和应用,逆变器作为能源转换和储存的核心设备,其在电力系统中的作用日益凸显。根据储能类型的不同,逆变器可以分为电化学储能逆变器和机械储能逆变器两大类。这两类逆变器在结构、原理和应用场景等方面存在...

关键字: 逆变器 可再生能源

随着全球能源结构的深刻变革,可再生能源的推广和应用已成为当今世界的发展趋势。在这一大背景下,逆变器作为连接可再生能源发电设备和电网的关键设备,其重要性日益凸显。本文旨在探讨逆变器的发展背景,分析当前市场现状,并展望其未来...

关键字: 逆变器 可再生能源

在电力系统中,隔离开关是一种关键设备,用于隔离电源、倒闸操作以及接通和断开小电流电路。在10kV高压系统中,隔离开关的选择尤为重要,它直接关系到电力系统的安全稳定运行。本文将对10kV高压隔离开关的选择进行详细探讨,以期...

关键字: 隔离开关 高压电
关闭