当前位置:首页 > 单片机 > 单片机
[导读]程序存储器(又称数据Flash),顾名思义,是用来存储用户的程序,使单片机能够按照编写的代码顺序执行,完成指定的任务。所以程序存储器是只读存储器(只读存储器),我们已经听过很多次了。代码存储在里面,一般有常数、表格、pi值、数码管形状、SCM ID号、内部参考信号源、关机唤醒定时器频率、IRC参数等数据。

程序存储器(又称数据Flash),顾名思义,是用来存储用户的程序,使单片机能够按照编写的代码顺序执行,完成指定的任务。所以程序存储器是只读存储器(只读存储器),我们已经听过很多次了。代码存储在里面,一般有常数、表格、pi值、数码管形状、SCM ID号、内部参考信号源、关机唤醒定时器频率、IRC参数等数据。

注意:单片机每次都是烧录程序,烧录就是为了把代码放到程序存储器中,而我们用的电脑则是把硬盘的数据和程序放到RAM,再用CPU去读取RAM里面的数据和程序

一、存储器的存储单位与编址

1.存储单位

位(bit):计算机的最小数据单位

字节(Byte):1Byte = 8bits

字(Word):1Word = 2Bytes = 16bits

2.编址

51单片机的存储单元是一个字节,为了存取数据方便,每个存储单元都有编号,这个编号就是编址,编址采用二进制数。例如:0000 0010B可以代表第二个存储单元。

二、51单片机有哪些内部存储器

1.片内RAM

RAM(Random Access Memory)又叫随机存取存储器,正常情况下不仅可以写入数据到RAM,也可以从RAM读取数据。

单片机内部总共有256Bytes的RAM。RAM的每一个字节都有编码,从0000 0000开始直到1111 1111,不同区域的RAM有着不同的功能。可以把RAM想象成一栋办公楼,不同的楼层有不同的部门,不同的部门自然干不同的活。

注意:因为单片机一次只能处理8个bit的数据(字长为8),并且一个8位二进制数的范围是0到256,所以单片机一次能寻址的范围也就是0到256。

2.片内ROM

ROM(Read-OnlyMemory),又叫只读存储器,正常情况下只能从ROM读取数据,不能往写入数据。

单片机内部的ROM大小为4KB(4096Bytes),字节地址范围为000H~0FFFH。

在特殊条件下,可以把程序烧入到ROM中,所以ROM也叫程序存储器。

如果ROM的大小不够存入所有程序,也可以外接ROM。单片机最多可外接64KB的ROM。内部ROM和外部ROM是统一编址,要么就只用64KB的外部ROM,要么就用4KB的内部ROM+60KB的外部ROM(外部ROM的开头4KB闲置)。

51单片机是如何区分是片内ROM还是片外ROM呢?

片内ROM和片外ROM的区分:

在单片机既有片内ROM又有片外ROM时,会产生一部分重复的地址范围,

为了解决区分片内和片外ROM的问题,51单片机设置了一根控制线EA(低电平有效),所以

EA = 0 => 有效 => 访问片内存储器

EA = 1 => 无效 => 片内存储器被忽略

本质的原理:

就是当PC的值大于了某个值时将访问外部存储器,PC的值小于了某个值时将访问内部存储器。这个值由存储器容量的大小绝定,在8051单片机中,片内ROM = 4KB,所以当PC小于0FFFH时,访问片内ROM。

三、存储器数据读写说明

要对256字节存储器的每个存储单元进行读写,需要8根地址线和8根数据线,先送8位地址选中某个存储单元,再根据读控制或写控制,将选中的存储单元的8位数据从8根数据线送出,或通过8根数据线将8位数据存入选中的存储单元中。以图1 存储器结构为例,当地址总线A7~A0将8位地址00011111(1FH)送入存储器时,会选中内部编址为1FH的存储单元,这时再从读控制线送入一个读控制信号,1FH 存储单元中的数据00010111从8根数据总线D7~D0送出。

总结

对于RAM和ROM,当我们写程序的时候,我们把程序误认为ROM,也就是说,我的某个逻辑形成了一系列的逻辑开关,但是当CPL进行操作的时候,在传输的过程中,交换逻辑需要不断的改变,所以RAM就诞生了。但是由于技术的限制,RAM不能下电来保存逻辑,即电路中的每个硅电子都不能被保存,并且这个过程限制了内存的大小。因此,RAM和ROM是通过CPU总线连接的。

通过51单片机的RAM地址,ROM地址,可以看到,ROM存储程序,通过CPU传递数据,到RAM,而RAM是各个寄存器的集合,按ROM程序形成逻辑,响应CPU,同时传递给ROM信号(这里ROM的逻辑已不变,相当于与或非的各种开关)。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭